Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57903
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝學真(Hsyue-Jen Hsieh)
dc.contributor.authorJian-Je Chenen
dc.contributor.author陳建志zh_TW
dc.date.accessioned2021-06-16T07:10:39Z-
dc.date.available2019-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-07-07
dc.identifier.citation[1] Stock, U.A., Vacanti, J.P., Tissue engineering: current state and prospects. Annual Review of Medicine 2001. 52: 443-451.
[2] Vats, A., Tolley, N.S., Polak, J.M., Gough, J.E., Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clinical Otolaryngology & Allied Sciences 2003. 28: 165-172.
[3] 宋信文, 梁晃千, 建立人類的身體工房 組織工程. 科學發展 2003. 362期: 6-11.
[4] Bowers, S.L.K., Banerjee, I., Baudino, T.A., The extracellular matrix: at the center of it all. Journal of Molecular and Cellular Cardiology 2010. 48: 474-482.
[5] Ma, Z., Kotaki, M., Inai, R., Ramakrishna, S., Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Engineering 2005. 11: 101-109.
[6] Alamein, M.A., Stephens, S., Qin Liu, S.S., Warnke, P.H., Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Tissue Engineering Part C: Methods 2013. 19: 458-472.
[7] Ushiki, T., Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Archives of Histology and Cytology 2002. 65: 109-126.
[8] Kleinman, H.K., Luckenbill-Edds, L., Cannon, F.W., Sephel, G.C., Use of extracellular matrix components for cell culture. Analytical Biochemistry 1987. 166: 1-13.
[9] Huang, Z.-M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology 2003. 63: 2223-2253.
[10] Barnes, C.P., Sell, S.A., Boland, E.D., Simpson, D.G., Bowlin, G.L., Nanofiber technology: designing the next generation of tissue engineering scaffolds. Advanced Drug Delivery Reviews 2007. 59: 1413-1433.
[11] Kołbuk, D., Sajkiewicz, P., Maniura-Weber, K., Fortunato, G., Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. European Polymer Journal 2013. 49: 2052-2061.
[12] Dahlin, R.L., Kasper, F.K., Mikos, A.G., Polymeric nanofibers in tissue engineering. Tissue Engineering Part B: Reviews 2011. 17: 349-364.
[13] Binulal, N.S., Natarajan, A., Menon, D., Bhaskaran, V.K., Mony, U., Nair, S.V., PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. Journal of Biomaterials Science, Polymer Edition 2014. 25: 325-340.
[14] Li, W.-J., Laurencin, C.T., Caterson, E.J., Tuan, R.S., Ko, F.K., Electrospun nanofibrous structure: A novel scaffold for tissue engineering. Journal of Biomedical Materials Research 2002. 60: 613-621.
[15] Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L., Jing, X., Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release 2003. 92: 227-231.
[16] Luu, Y.K., Kim, K., Hsiao, B.S., Chu, B., Hadjiargyrou, M., Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. Journal of Controlled Release 2003. 89: 341-353.
[17] Kenawy, E.-R., Bowlin, G.L., Mansfield, K., Layman, J., Simpson, D.G., Sanders, E.H., Wnek, G.E., Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. Journal of Controlled Release 2002. 81: 57-64.
[18] Khil, M.-S., Cha, D.-I., Kim, H.-Y., Kim, I.-S., Bhattarai, N., Electrospun nanofibrous polyurethane membrane as wound dressing. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2003. 67B: 675-679.
[19] Ding, B., Wang, M., Wang, X., Yu, J., Sun, G., Electrospun nanomaterials for ultrasensitive sensors. Materials Today 2010. 13: 16-27.
[20] Li, J., He, A., Han, C.C., Fang, D., Hsiao, B.S., Chu, B., Electrospinning of hyaluronic acid (HA) and HA/gelatin blends. Macromolecular Rapid Communications 2006. 27: 114-120.
[21] Zheng, F., Wang, S., Wen, S., Shen, M., Zhu, M., Shi, X., Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 2013. 34: 1402-1412.
[22] Li, L., Qian, Y., Jiang, C., Lv, Y., Liu, W., Zhong, L., Cai, K., Li, S., Yang, L., The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. Biomaterials 2012. 33: 3428–3445.
[23] Fornhals, A., Process and apparatus for preparing artificial threads. US patent 1934.
[24] Baji, A., Mai, Y.-W., Wong, S.-C., Abtahi, M., Chen, P., Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Composites Science and Technology 2010. 70: 703-718.
[25] Baumgarten, P.K., Electrostatic spinning of acrylic microfibers. Journal of Colloid and Interface Science 1971. 36: 71-79.
[26] Chong, E.J., Phan, T.T., Lim, I.J., Zhang, Y.Z., Bay, B.H., Ramakrishna, S., Lim, C.T., Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterialia 2007. 3: 321-330.
[27] Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B.S., Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002. 43: 4403-4412.
[28] Ghasemi-Mobarakeh, L., Prabhakaran, M.P., Morshed, M., Nasr-Esfahani, M.-H., Ramakrishna, S., Electrospun poly(ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008. 29: 4532-4539.
[29] Zhang, Y., Ouyang, H., Lim, C.T., Ramakrishna, S., Huang, Z.-M., Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005. 72B: 156-165.
[30] Zeng, J., Chen, X., Xu, X., Liang, Q., Bian, X., Yang, L., Jing, X., Ultrafine fibers electrospun from biodegradable polymers. Journal of Applied Polymer Science 2003. 89: 1085-1092.
[31] Yarin, A.L., Koombhongse, S., Reneker, D.H., Bending instability in electrospinning of nanofibers. Journal of Applied Physics 2001. 89: 3018-3026.
[32] Lannutti, J., Reneker, D., Ma, T., Tomasko, D., Farson, D., Electrospinning for tissue engineering scaffolds. Materials Science and Engineering: C 2007. 27: 504-509.
[33] Fischer, R., McCoy, M., Grant, S., Electrospinning collagen and hyaluronic acid nanofiber meshes. Journal of Materials Science: Materials in Medicine 2012. 23: 1645-1654.
[34] Bai, J., Li, Y., Yang, S., Du, J., Wang, S., Zheng, J., Wang, Y., Yang, Q., Chen, X., Jing, X., A simple and effective route for the preparation of poly(vinylalcohol) (PVA) nanofibers containing gold nanoparticles by electrospinning method. Solid State Communications 2007. 141: 292-295.
[35] Cui, W., Li, X., Zhou, S., Weng, J., Investigation on process parameters of electrospinning system through orthogonal experimental design. Journal of Applied Polymer Science 2007. 103: 3105-3112.
[36] Shin, Y.M., Hohman, M.M., Brenner, M.P., Rutledge, G.C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 2001. 42: 09955-09967.
[37] Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L., Electrospinning of collagen nanofibers. Biomacromolecules 2002. 3: 232-238.
[38] Pham, Q.P., Sharma, U., Mikos, D.A.G., Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Engineering 2006. 12: 1197-1211.
[39] Sukigara, S., Gandhi, M., Ayutsede, J., Micklus, M., Ko, F., Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties. Polymer 2003. 44: 5721-5727.
[40] Tao, J., Shivkumar, S., Molecular weight dependent structural regimes during the electrospinning of PVA. Materials Letters 2007. 61: 2325-2328.
[41] Koski, A., Yim, K., Shivkumar, S., Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 2004. 58: 493-497.
[42] Deitzel, J.M., Kleinmeyer, J., Harris, D., Beck Tan, N.C., The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001. 42: 261-272.
[43] Uyar, T., Besenbacher, F., Electrospinning of uniform polystyrene fibers: The effect of solvent conductivity. Polymer 2008. 49: 5336-5343.
[44] Gautam, S., Dinda, A.K., Mishra, N.C., Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Materials Science and Engineering: C 2013. 33: 1228–1235.
[45] Haghi, A.K., Akbari, M., Trends in electrospinning of natural nanofibers. physica status solidi (a) 2007. 204: 1830-1834.
[46] Yuan, X., Zhang, Y., Dong, C., Sheng, J., Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International 2004. 53: 1704-1710.
[47] Zhang, C., Yuan, X., Wu, L., Han, Y., Sheng, J., Study on morphology of electrospun poly(vinyl alcohol) mats. European Polymer Journal 2005. 41: 423-432.
[48] Ryu, Y.J., Kim, H.Y., Lee, K.H., Park, H.C., Lee, D.R., Transport properties of electrospun nylon 6 nonwoven mats. European Polymer Journal 2003. 39: 1883-1889.
[49] Frenot, A., Chronakis, I.S., Polymer nanofibers assembled by electrospinning. Current Opinion in Colloid & Interface Science 2003. 8: 64-75.
[50] Vrieze, S., Camp, T., Nelvig, A., Hagström, B., Westbroek, P., Clerck, K., The effect of temperature and humidity on electrospinning. Journal of Materials Science 2009. 44: 1357-1362.
[51] Wang, M., Jing, N., Su, C.B., Kameoka, J., Chou, C.-K., Hung, M.-C., Chang, K.-A., Electrospinning of silica nanochannels for single molecule detection. Applied Physics Letters 2006. 88: -.
[52] Li, D., Xia, Y., Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Letters 2004. 4: 933–938.
[53] Teo, W.E., Ramakrishna, S., A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006. 17: r89-r106.
[54] Chen, R., Huang, C., Ke, Q., He, C., Wang, H., Mo, X., Preparation and characterization of coaxial electrospun thermoplastic polyurethane/collagen compound nanofibers for tissue engineering applications. Colloids and Surfaces B: Biointerfaces 2010. 79: 315-325.
[55] Reneker, D.J.S.D.H., McManus, A.T., Schreuder-Gibson, H.L., Mello, C., Sennett, S., MA Electrospun fibers and an apparatus therefor. US Patent 2004.
[56] Theron, S.A., Zussman, E., Yarin, A.L., Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004. 45: 2017-2030.
[57] Theron, S.A., Yarin, A.L., Zussman, E., Kroll, E., Multiple jets in electrospinning: experiment and modeling. Polymer 2005. 46: 2889-2899.
[58] Yarin, A.L., Zussman, E., Upward needleless electrospinning of multiple nanofibers. Polymer 2004. 45: 2977-2980.
[59] Teo, W.-E., Inai, R., Ramakrishna, S., Technological advances in electrospinning of nanofibers. Science and Technology of Advanced Materials 2011. 12: 1-19.
[60] Boland, E.D., E.Wnek, G., G.Simpson, D., Pawlowski, K.J., L.Bowlin, G., Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. . Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2001. 38: 1231-1243.
[61] Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L., Electrospinning of collagen nanofibers. Biomacromolecules 2002. 3: 232–238.
[62] Liang, D., Hsiao, B.S., Chu, B., Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery Reviews 2007. 59: 1392-1412.
[63] Fang, X., Reneker, D.H., DNA fibers by electrospinning. Journal of Macromolecular Science, Part B: Physics 1997. 36: 169-173.
[64] Xie, J., Hsieh, Y.-L., Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. Journal of Materials Science 2003. 38: 2125-2133.
[65] Huang, L., Nagapudi, K., Chaikof, R.P.A.E.L., Engineered collagen–PEO nanofibers and fabrics. Journal of Biomaterials Science, Polymer Edition 2001. 12: 979-993.
[66] Aluigi, A., Varesano, A., Montarsolo, A., Vineis, C., Ferrero, F., Mazzuchetti, G., Tonin, C., Electrospinning of keratin/poly(ethylene oxide)blend nanofibers. Journal of Applied Polymer Science 2007. 104: 863-870.
[67] 蔡睿逸, 以幾丁聚醣為主的多成分複合電紡纖維之製備及其特性探討與骨分化應用. 國立臺灣大學化學工程研究所博士論文, 2014.
[68] Alvarez Perez, M.A., Guarino, V., Cirillo, V., Ambrosio, L., In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. Journal of Biomedical Materials Research Part A 2012. 100A: 3008-3019.
[69] Kim, Y.H., Kim, D.-H., Hwang, J., Kim, H.-S., Lim, G.Y., Ryoo, Z.Y., Choi, S.-U., Lee, S., The inclusion of fetal bovine serum in gelatin/PCL electrospun scaffolds reduces short-term osmotic stress in HEK 293 cells caused by scaffold components. Journal of Applied Polymer Science 2013. 129: 3273-3281.
[70] Yang, X., Yang, F., Walboomers, X.F., Bian, Z., Fan, M., Jansen, J.A., The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. Journal of Biomedical Materials Research - Part A 2010. 93: 247-257.
[71] Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E., MacLellan, W.R., Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 2008. 29: 2907-2914.
[72] Kim, M.S., Jun, I., Shin, Y.M., Jang, W., Kim, S.I., Shin, H., The development of genipin-crosslinked poly(caprolactone) (PCL)/gelatin nanofibers for tissue engineering applications. Macromolecular Bioscience 2010. 10: 91-100.
[73] Zheng, R., Duan, H., Xue, J., Liu, Y., Feng, B., Zhao, S., Zhu, Y., Liu, Y., He, A., Zhang, W., Liu, W., Cao, Y., Zhou, G., The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 2014. 35: 152-164.
[74] Dahlin, R.L., Kasper, F.K., Mikos, n.G., Polymeric nanofibers in tissue engineering. Tissue Engineering Part B: Reviews 2011. 17: 349-364.
[75] Burger, C., Hsiao, B.S., Chu, B., Nanofibrous materials and their applications. Annual Review of Materials Research 2006. 36: 333-368.
[76] Lowery, J.L., Datta, N., Rutledge, G.C., Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ɛ-caprolactone) fibrous mats. Biomaterials 2010. 31: 491-504.
[77] Van der Schueren, L., De Schoenmaker, B., Kalaoglu, Ö.I., De Clerck, K., An alternative solvent system for the steady state electrospinning of polycaprolactone. European Polymer Journal 2011. 47: 1256-1263.
[78] Ki, C.S., Baek, D.H., Gang, K.D., Lee, K.H., Um, I.C., Park, Y.H., Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 2005. 46: 5094-5102.
[79] Cipitria, A., Skelton, A., Dargaville, T.R., Dalton, P.D., Hutmacher, D.W., Design, fabrication and characterization of PCL electrospun scaffolds—a review. The Royal Society of Chemistry 2011. 21: 9419-9453.
[80] Kweon, H., Yoo, M., Park, I., Kim, T., Lee, H., Lee, H.-S., A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003. 24: 801-808.
[81] Lee, K.H., Kim, H.Y., Khil, M.S., Ra, Y.M., Lee, D.R., Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer 2003. 44: 1287-1294.
[82] Yasin, M., Tighe, B.J., Polymers for biodegradable medical devices: VIII. Hydroxybutyrate-hydroxyvalerate copolymers: physical and degradative properties of blends with polycaprolactone. Biomaterials 1992. 13: 9-16.
[83] Hartman, O., Zhang, C., Adams, E.L., Farach-Carson, M.C., Petrelli, N.J., Chase, B.D., Rabolt, J.F., Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. Biomaterials 2010. 31: 5700-5718.
[84] Woodruff, M.A., Hutmacher, D.W., The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science 2010. 35: 1217–1256.
[85] Sarasam, A., Madihally, S.V., Characterization of chitosan–polycaprolactone blends for tissue engineering applications. Biomaterials 2005. 26: 5500–5508.
[86] Neves, S.C., Teixeira, L.S.M., Moroni, L., Reis, R.L., Blitterswijk, C.A.V., Alves, N.M., Karperien, M., Mano, J.F., Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 2011. 32: 1068-1079.
[87] Ishaug-Riley, S.L., Okun, L.E., Prado, G., Applegate, M.A., Ratcliffe, A., Human articular chondrocyte adhesion and proliferation on synthetic biodegradable polymer films. Biomaterials 1999 20: 2245-2256.
[88] Zhang, S., Huang, Y., Yang, X., Mei, F., Ma, Q., Chen, G., Ryu, S., Deng, X., Gelatin nanofibrous membrane fabricated by electrospinning of aqueous gelatin solution for guided tissue regeneration. Journal of Biomedical Materials Research Part A 2008. 90A: 671–679.
[89] Liu, Y., Liu, X., Wang, X., Biomimetic synthesis of gelatin polypeptide-assisted noble-metal nanoparticles and their interaction study. Nanoscale Research Letters 2010. 6: 1-11.
[90] Zhang, Y.Z., Venugopal, J., Huang, Z.-M., Lim, C.T., Ramakrishna, S., Crosslinking of the electrospun gelatin nanofibers. Polymer 2006. 47: 2911–2917.
[91] Trong, I.L., McDevitt, T.C., Nelson, K.E., Stayton, P.S., Stenkamp, R.E., Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin. Acta Crystallographica Section D 2003. 59: 828-834.
[92] Haider, S., Al-Masry, W.A., Nausheen, Bukhari, Javid, M., Preparation of the chitosan containing nanofibers by electrospinning chitosan–gelatin complexes. Polymer Engineering & Science 2010. 50: 1887-1893.
[93] Fraser, J.R.E., Laurent, T.C., Laurent, U.B.G., Hyaluronan: its nature, distribution, functions and turnover. Journal of Internal Medicine 1997. 242: 27-33.
[94] Day, A.J., Prestwich, G.D., Hyaluronan-binding proteins: tying up the giant. The Journal of Biological Chemistry 2002. 277: 4585-4588.
[95] Turley, E.A., Noble, P.W., Bourguignon, L.Y.W., Signaling properties of hyaluronan receptors. The Journal of Biological Chemistry 2002. 277: 4589-4592.
[96] 陳柏仰, 透明質酸及含氫氧基磷灰石之膠原蛋白複合基質對於脂肪基質細胞增生及骨分化潛能之效應. 國立台灣大學化學工程研究所博士論文, 2007.
[97] Yoo, H.S., Lee, E.A., Yoon, J.J., Park, T.G., Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 2005. 26: 1925-1933.
[98] Laurent, T., Fraser, J., Hyaluronan. FASEB J 1992. 6: 2397-2404.
[99] Ramamurthi, A., Vesely, I., Evaluation of the matrix-synthesis potential of crosslinked hyaluronan gels for tissue engineering of aortic heart valves. Biomaterials 2005. 26: 999-1010.
[100] Kim, I.L., Mauck, R.L., Burdick, J.A., Hydrogel design for cartilage tissue engineering: A case study with hyaluronic acid. Biomaterials 2011. 32: 8771-8782.
[101] Ifkovits, J.L., Tous, E., Minakawa, M., Morita, M., Robb, J.D., Koomalsingh, K.J., Gorman, J.H., Gorman, R.C., Burdick, J.A., Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proceedings of the National Academy of Sciences 2010. 107: 11507-11512.
[102] Chen, W.Y.J., Abatangelo, G., Functions of hyaluronan in wound repair. Wound Repair and Regeneration 1999. 7: 79-89.
[103] Seo, Y.-K., Yoon, H.-H., Song, K.-Y., Kwon, S.-Y., Lee, H.-S., Park, Y.-S., Park, J.-K., Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments. Journal of Orthopaedic Research 2009. 27: 495-503.
[104] 陳凱評. 以靜電紡絲法製備透明質酸/幾丁聚醣/聚乙烯醇複合奈米纖維之研究. 國立臺灣大學化學工程研究所碩士論文2013.
[105] Fakhari, A., Berkland, C., Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomaterialia 2013. 9: 7081-7092.
[106] Volpi, N., Schiller, J., Stern, R., Soltes, L., Role, metabolism, chemical modifications and applications of hyaluronan. Current Medicinal Chemistry 2009. 16: 1718-1745.
[107] Khor, E., Methods for the treatment of collagenous tissues for bioprostheses. Biomaterials 1997. 18: 95-105.
[108] Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., Roveri, N., Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials 2001. 22: 763-768.
[109] Rault, I., Frei, V., Herbage, D., Abdul-Malak, N., Huc, A., Evaluation of different chemical methods for cros-linking collagen gel, films and sponges. Journal of Materials Science: Materials in Medicine 1996. 7: 215-221.
[110] Sung, H.-W., Huang, D.-M., Chang, W.-H., Huang, R.-N., Hsu, J.-C., Evaluation of gelatin hydrogel crosslinked with various crosslinking agents as bioadhesives: In vitro study. Journal of Biomedical Materials Research 1999. 46: 520-530.
[111] Olde Damink, L.H.H., Dijkstra, P.J., Luyn, M.J.A., Wachem, P.B., Nieuwenhuis, P., Feijen, J., Glutaraldehyde as a crosslinking agent for collagen-based biomaterials. Journal of Materials Science: Materials in Medicine 1995. 6: 460-472.
[112] Farris, S., Song, J., Huang, Q., Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of Agricultural and Food Chemistry 2010. 58: 998–1003.
[113] Schiffman, J.D., Schauer, C.L., Cross-linking chitosan nanofibers. Biomacromolecules 2007. 8: 594–601.
[114] Tual, C., Espuche, E., Escoubes, M., Domard, A., Transport properties of chitosan membranes: influence of crosslinking. Journal of Polymer Science Part B: Polymer Physics 2000. 38: 1521-1529.
[115] Knaul, J.Z., Hudson, S.M., Creber, K.A.M., Crosslinking of chitosan fibers with dialdehydes: Proposal of a new reaction mechanism. Journal of Polymer Science Part B: Polymer Physics 1999. 37: 1079-1094.
[116] Tomihata, K., Ikada, Y., Crosslinking of hyaluronic acid with glutaraldehyde. Journal of Polymer Science Part A: Polymer Chemistry 1997. 35: 3553-3559.
[117] Wang, X., Fang, D., Yoon, K., Hsiao, B.S., Chu, B., High performance ultrafiltration composite membranes based on poly(vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly(vinyl alcohol) scaffold. Journal of Membrane Science 2006. 278: 261-268.
[118] Ketelaars, A.A.J., Papantoniou, Y., Nakayama, K., Analysis of the density and the enthalpy of poly(ϵ-caprolactone)-polycarbonate blends: Amorphous phase compatibility and the effect of secondary crystallization. Journal of Applied Polymer Science 1997. 66: 921-927.
[119] Ward, A.G., Courts, A., The science and technology of gelatin. Food science and technology 1977. London ; New York: Academic Press. xvi: 564 p.
[120] Manasa, M., Sridevi, V., Lakshmi, M.V.V.C., Dedeepya, J., A Review on Hyaluronic Acid. International Journal of Research in Chemistry and Environment 2012. 2: 6-11.
[121] Placido, F., Birney, R., Kavanagh, J., Investigation of automotive detailing products by ellipsometry and contact angle analysis. Acta Physica Polonica, A 2009. 116: 712-714.
[122] 許樹恩, 吳泰伯, X光繞射原理與材料結構分析. 中國材料科學學會 1996.
[123] Shenoy, S.L., Bates, W.D., Frisch, H.L., Wnek, G.E., Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit. Polymer 2005. 46: 3372–3384.
[124] Schueren, L.V.d., Steyaert, I., Schoenmaker, B.D., Clerck, K.D., Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system. Carbohydrate Polymers 2012. 88: 1221–1226.
[125] Feng, B., Tu, H., Yuan, H., Peng, H., Zhang, Y., Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nanofibers of GT/PCL. Biomacromolecules 2012. 13: 3917-3925.
[126] Baji, A., Wong, S.-C., Liu, T., Li, T., Srivatsan, T.S., Morphological and X-ray diffraction studies of crystalline hydroxyapatite-reinforced polycaprolactone. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2007. 81B: 343-350.
[127] Martel-Estrada, S.A., Martínez-Pérez, C.A., Chacón-Nava, J.G., García-Casillas, P.E., Olivas-Armendariz, I., Synthesis and thermo-physical properties of chitosan/poly(dl-lactide-co-glycolide) composites prepared by thermally induced phase separation. Carbohydrate Polymers 2010. 81: 775-783.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57903-
dc.description.abstract由於天然高分子擁有細胞相容性佳的特點,而人工合成高分子則是機械強度高,若將兩者混合,再製備成與人體細胞外間質相似的結構,即為奈米纖維狀,不但能夠維持纖維的機械強度,而且也能夠有利於細胞貼附及增殖。本研究選擇甲/乙酸做為溶劑,避免有機溶劑的高汙染問題,再搭配靜電紡絲法將聚己內酯/動物明膠/透明質酸(P/G/H)形成的高分子溶液製備成奈米纖維,另外同時製備聚己內酯/動物明膠(P/G)及聚己內酯(P)纖維膜做對照比較。進料流量分為0.005、0.0075及0.01 mL/min共3組、操作電壓則分為15、20及25 kV共3組,再嘗試改變溶劑種類、溶劑比例、高分子總濃度、聚己內酯與明膠間的比例及透明質酸分子量,最後選出甲/乙酸體積比例為7/3、高分子總濃度15 %(w/v)、聚己內酯/明膠重量比例為3/1、分子量為50 kDa的透明質酸佔1.5 %(w/v),操作電壓為25 kV、進料流量為0.0075 mL/min,作為最佳實驗條件,可製成直徑約118.7 ± 20.0 nm的奈米纖維。
本研究在纖維膜的機械強度測定當中,發現經由戊二醛蒸氣交聯8小時後,P/G/H纖維膜的最大抗拉應力從3.02 ± 0.62 MPa升高到5.14 ± 0.7 MPa,和P纖維膜最大抗拉應力5.62 ± 0.72 MPa強度相近,因此選擇交聯8小時為最佳參數;藉由水接觸角測定發現添加明膠及透明質酸能夠改善聚己內酯疏水的問題,P纖維膜的接觸角:84.99° ± 1.39°,P/G纖維膜接觸角下降到42.3° ± 2.1°,P/G/H纖維膜則是下降至52.77° ± 1.28°;再由紅外線吸收光譜、X射線光電子能譜儀、X光繞射儀、熱重分析儀及示差掃描量熱分析儀證實P/G/H三成份均勻混合在一起,同時X光繞射儀也能夠證實聚己內酯的半結晶特性;在崩解性實驗裡,發現經由戊二醛蒸氣交聯8小時,能夠提升P/G及P/G/H纖維膜材料的穩定性,且P/G/H纖維膜較P/G穩定性佳;最後藉由蛋白質總量、MTT測定及光學、螢光顯微鏡觀察KP-hMSC細胞貼附及增殖結果顯示,P/G及P/G/H纖維膜具有良好的細胞相容性。希冀在未來能進一步發展P/G及P/G/H纖維膜在組織工程的應用。

關鍵字:奈米纖維、靜電紡絲法、聚己內酯、動物明膠、透明質酸、甲/乙酸、戊二醛
zh_TW
dc.description.abstractThe advantage of natural polymers is good cell compatibility, while that of synthetic polymers is high mechanical strength. If natural and synthetic polymers are mixed, and fabricated into a nanofibrous structure similar to human extracellular matrix, it can maintain its mechanical strength and promote cell attachment and proliferation.
To avoid pollution problems from organic solvents, formic acid/acetic acid was chosen to be the solvent of this research. Polycaprolactone/gelatin/hyaluronic acid (P/G/H), which was dissolved in formic acid/acetic acid, was fabricated into nanofibers by electrospinning. On the other hand, polycaprolactone/gelatin (P/G) and polycaprolactone (P) nanofibers were fabricated for comparison. The flow rates of the feed were 0.005, 0.0075, and 0.01 mL/min. The applied voltages of the experiment were 15, 20, 25 kV. Also, the influences of different kinds of solvents, ratios of solvents, total polymer concentrations, ratios of polycaprolactone to gelatin and the molecular weights of hyaluronic acid were explored. Finally, 7/3 formic acid/acetic acid ratio, 15 %(w/v) total polymer concentration, 3/1 polycaprolactone/gelatin ratio, 50 kDa molecular weight of hyaluronic acid with concentration of 1.5 %(w/v), 25 kV applied voltage and 0.0075 mL/min flow rate were selected as the final optimal experimental parameters for preparing nanofibers with diameters of 118.7 ± 20.0 nm.
In the tensile strength test, after the P/G/H nanofibrous meshes were cross-linked by the vapor of glutaraldehyde for 8 hours, their maximum tensile stress, 3.02 ± 0.62 MPa, was elevated to 5.14 ± 0.7 MPa, which was close to the maximum tensile stress of P nanofibrous meshes (5.62 ± 0.72 MPa). Therefore, crosslinking for 8 hours was selected as the best parameter. Through the water contact angle measurements, it could be found that the addition of gelatin and hyaluronic acid could reduce the hydrophobicity of polycaprolactone. The water contact angle of P meshe was 84.99° ± 1.39°. On the other hand, the water contact angles of P/G and P/G/H meshes were reduced to 42.3° ± 2.1° and 52.77° ± 1.28°. The nanofibrous meshes were also analyzed by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), thermogravimetric (TGA) and differential scanning calorimetry (DSC). The results demonstrated that the three polymers (P/G/H) were mixed well. The XRD results also demonstrated the semi-crystalline properties of polycaprolactone. In the degradation experiments, after the meshes were crosslinked by the glutaraldehyde vapor for 8 hours, the stability of the P/G and P/G/H nanofibrous meshes was enhanced. Finally, through the total protein, MTT assays, and microscopic observation of KP-hMSC cell adhesion and proliferation, it was clear that P/G and P/G/H nanofibrous meshes had good cell compatibility. In the future, it is expected that these nanofibrous meshes can be used as tissue engineering scaffolds.

Keywords:Nanofibers, Electrospinning, Polycaprolactone, Gelatin, Hyaluronic acid, Formic acid/acetic acid, Glutaraldehyde
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:10:39Z (GMT). No. of bitstreams: 1
ntu-103-R01524004-1.pdf: 7704761 bytes, checksum: fdd5ed25b13e5ccb5f3ee50a382f1525 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents目錄
誌謝 I
摘要 V
Abstract VII
目錄 IX
圖目錄 XIII
表目錄 XIX
符號與縮寫說明 XXI
中英名詞對照表 XXIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 實驗架構與流程 3
第二章 文獻回顧 5
2.1組織工程 5
2.2細胞外間質 6
2.3奈米纖維材料在生醫方面的應用 7
2.4奈米纖維材料優缺點 8
2.5靜電紡絲法 9
2.5.1靜電紡絲法原理 9
2.5.2影響靜電紡絲法的實驗參數 11
2.5.2.1溶液基本性質 12
2.5.2.2靜電紡絲操作參數 14
2.5.3靜電紡絲法裝置分類 16
2.5.3.1針頭設計方式 16
2.5.3.2收集板外型 19
2.5.4靜電紡絲法材料種類 21
2.5.4.1天然高分子 21
2.5.4.2合成高分子 22
2.5.4.3天然/合成高分子混合使用 23
2.5.5溶劑選擇對於聚己內酯複合物之電紡影響 24
2.6生醫材料 25
2.6.1聚己內酯(PCL) 25
2.6.2動物明膠(gelatin) 26
2.6.3透明質酸(hyaluronic acid) 27
2.7交聯劑 29
第三章 實驗材料、儀器與方法 33
3.1實驗材料 33
3.2實驗儀器 35
3.3 實驗方法 37
3.3.1聚己內酯(P)溶液配製 37
3.3.2聚己內酯/動物明膠(P/G)混合溶液配製 37
3.3.3聚己內酯/動物明膠/透明質酸(P/G/H)混合溶液配製 37
3.3.4混合溶液黏度性質分析 38
3.3.5靜電紡絲法 38
3.3.6纖維膜交聯 40
3.3.7奈米纖維之分析 40
3.3.7.1 SEM結果觀察 40
3.3.7.2纖維孔隙度及直徑分析 40
3.3.7.3機械性質 41
3.3.7.4水接觸角測定 42
3.3.7.5 FT-IR分析 43
3.3.7.6 X射線光電子能譜儀 (XPS) 43
3.3.7.7 XRD分析 43
3.3.7.8 TGA分析 44
3.3.7.9 DSC分析 44
3.3.7.10 崩解測定 45
3.3.8細胞相容性測定 45
3.3.8.1 纖維膜於細胞培養前置處理 45
3.3.8.2細胞培養 46
3.3.8.3蛋白質總量測定 46
3.3.8.4 MTT測定 47
3.3.9數據統計分析 47
第四章 實驗結果與討論 49
4.1溶液性質分析-黏度測定 49
4.2電紡溶劑及高分子溶質之探討(SEM觀察) 53
4.2.1溶劑選擇對於聚己內酯(P)奈米纖維之影響 53
4.2.2聚己內酯濃度對於奈米纖維之影響 57
4.2.3添加明膠(G)對於奈米纖維之影響 61
4.2.4甲/乙酸比例對於P/G纖維型態之影響 66
4.2.5添加透明質酸(H)(分子量50 kDa)對於奈米纖維之影響 69
4.2.6透明質酸(H)分子量對於奈米纖維之影響 73
4.3混合纖維孔隙度與直徑分析 76
4.4機械性質測定 79
4.5材料表面物理性質測定 88
4.5.1水接觸角測定 88
4.5.2 FT-IR 90
4.5.3 XPS 93
4.5.4 XRD 95
4.6熱性質分析 97
4.6.1 TGA 97
4.6.2 DSC 100
4.7崩解性質測定 102
4.8 細胞相容性測定 108
4.8.1細胞蛋白質總量測定 108
4.8.2 MTT測定 109
4.8.3細胞數量及型態-光學顯微鏡觀察 109
4.8.4細胞數量及型態-FDA/PI螢光染色觀察 110
第五章 結論與未來方向 115
5.1結論 115
5.2未來研究方向 116
參考文獻 119
dc.language.isozh-TW
dc.title以電紡絲法製備聚己內酯/動物明膠/透明質酸混合奈米纖維及其應用zh_TW
dc.titleFabrication and Application of Polycaprolactone / Gelatin / Hyaluronic acid Hybrid Nanofibers by Electrospinningen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee胡晉嘉(Jin-Jia Hu),林忻怡(Hsin-Yi Lin)
dc.subject.keyword奈米纖維,靜電紡絲法,聚己內酯,動物明膠,透明質酸,zh_TW
dc.subject.keywordNanofibers,Electrospinning,Polycaprolactone,Gelatin,Hyaluronic acid,en
dc.relation.page128
dc.rights.note有償授權
dc.date.accepted2014-07-07
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved