請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57894
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭世榮(Shih-Jung Cheng) | |
dc.contributor.author | Chia-Ning Hsiang | en |
dc.contributor.author | 項家寧 | zh_TW |
dc.date.accessioned | 2021-06-16T07:10:06Z | - |
dc.date.available | 2020-08-26 | |
dc.date.copyright | 2020-08-26 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-23 | |
dc.identifier.citation | 1. Neville, et al., Oral and Maxillofacial Pathology. 2 ed. 2002. 315-76. 2. Shah, J., Head and Neck Surgery. 2nd ed. 2002. 143-234, 355-93,. 3. Ko, Y., Y. Huang, and C. Lee, Betal quid chewing, smoking and alcohol consumption realted to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24: p. 450-3. 4. Chen, Y.K., et al., Primary oral squamous cell carcinoma: an analysis of 703 cases in southern Taiwan. Oral Oncol, 1999. 35(2): p. 173-9. 5. Liao, C.T., et al., Analysis of risk factors of predictive local tumor control in oral cavity cancer. Ann Surg Oncol, 2008. 15(3): p. 915-22. 6. Garavello, W., et al., The oral cancer epidemic in central and eastern Europe. International journal of cancer, 2010. 127(1): p. 160-171. 7. Neville, B.W. and T.A. Day, Oral cancer and precancerous lesions. CA: a cancer journal for clinicians, 2002. 52(4): p. 195-215. 8. Chen, Y.J., et al., Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci, 2008. 99(8): p. 1507-14. 9. Jeng, J.-H., M. Chang, and L. Hahn, Role of areca nut in betel quid-associated chemical carcinogenesis: current awareness and future perspectives. Oral oncology, 2001. 37(6): p. 477-492. 10. Jaber, M., et al., Risk factors for oral epithelial dysplasia—the role of smoking and alcohol. Oral oncology, 1999. 35(2): p. 151-156. 11. Soler, M., et al., Fiber intake and the risk of oral, pharyngeal and esophageal cancer. International journal of cancer, 2001. 91(3): p. 283-287. 12. Sankaranarayanan, R., et al., Chemoprevention of oral leukoplakia with vitamin A and beta carotene: an assessment. Oral oncology, 1997. 33(4): p. 231-236. 13. Partridge, M., et al., New insights into p53 protein stabilisation in oral squamous cell carcinoma. Oral Oncol, 1999. 35(1): p. 45-55. 14. Leemans, C.R., B.J. Braakhuis, and R.H. Brakenhoff, The molecular biology of head and neck cancer. Nat Rev Cancer, 2011. 11(1): p. 9-22. 15. Caminero, M.J., et al., Detection of p53 protein in oropharyngeal carcinoma: prognostic implications. Archives of Otolaryngology–Head Neck Surgery, 1996. 122(7): p. 769-772. 16. Edwards, P.C., Oral cancer screening for asymptomatic adults: do the United States Preventive Services Task Force draft guidelines miss the proverbial forest for the trees? Oral surgery, oral medicine, oral pathology and oral radiology, 2013. 116(2): p. 131-134. 17. Sheu, J.J., et al., Functional genomic analysis identified epidermal growth factor receptor activation as the most common genetic event in oral squamous cell carcinoma. Cancer Res, 2009. 69(6): p. 2568-76. 18. Slaughter, D.P., H.W. Southwick, and W. Smejkal, Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer, 1953. 6(5): p. 963-8. 19. Zahorowska, B., P.J. Crowe, and J.L. Yang, Combined therapies for cancer: a review of EGFR-targeted monotherapy and combination treatment with other drugs. J Cancer Res Clin Oncol, 2009. 135(9): p. 1137-48. 20. Barclay, J., J. Creswell, and J. León, Cancer immunotherapy and the PD-1/PD-L1 checkpoint pathway. Archivos espanoles de urologia, 2018. 71(4): p. 393-399. 21. Vlková, B., et al., Salivary markers of oxidative stress in patients with oral premalignant lesions. Archives of Oral Biology, 2012. 57(12): p. 1651-1656. 22. Van der Waal, I., Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral oncology, 2009. 45(4-5): p. 317-323. 23. Bánóczy, J., Z. Gintner, and C. Dombi, Tobacco use and oral leukoplakia. Journal of dental education, 2001. 65(4): p. 322-327. 24. van der Waal, I., Potentially malignant disorders of the oral and oropharyngeal mucosa; present concepts of management. Oral oncology, 2010. 46(6): p. 423-425. 25. Krahl, D., A. Altenburg, and C.C. Zouboulis, Reactive hyperplasias, precancerous and malignant lesions of the oral mucosa. JDDG: Journal der Deutschen Dermatologischen Gesellschaft, 2008. 6(3): p. 217-232. 26. Lodi, G. and S. Porter, Management of potentially malignant disorders: evidence and critique. Journal of oral pathology medicine, 2008. 37(2): p. 63-69. 27. Wermuth, B., et al., Enzymology and molecular biology of carbonyl metabolism. by Weiner H., Wermuth B., Crabb DW, Plenum Press, New York and London, 1991: p. 197-204. 28. Labrie, F., et al., History of LHRH agonist and combination therapy in prostate cancer. Endocrine-related Cancer - ENDOCR-RELATED CANCER, 1996. 3: p. 243-278. 29. Labrie, F., et al., Combination therapy with flutamide and castration (LHRH agonist or orchiectomy) in advanced prostate cancer: A marked improvement in response and survival. Journal of Steroid Biochemistry, 1985. 23(5, Part 2): p. 833-841. 30. Jez, J.M., T.G. Flynn, and T.M. Penning, A new nomenclature for the aldo-keto reductase superfamily. Biochemical pharmacology, 1997. 54(6): p. 639-647. 31. Penning, T.M., Hydroxysteroid dehydrogenases and pre‐receptor regulation of steroid hormone action. Human Reproduction Update, 2003. 9(3): p. 193-205. 32. Bennett, M.J., et al., Structure of 3α-Hydroxysteroid/Dihydrodiol Dehydrogenase Complexed with NADP+ Biochemistry, 1996. 35(33): p. 10702-10711. 33. Penning, T.M., Molecular endocrinology of hydroxysteroid dehydrogenases. Endocrine reviews, 1997. 18(3): p. 281-305. 34. Bohren, K.M., et al., The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. Journal of Biological Chemistry, 1989. 264(16): p. 9547-9551. 35. Schade, S., et al., Sequence analysis of bovine lens aldose reductase. Journal of Biological Chemistry, 1990. 265(7): p. 3628-3635. 36. Medicine, P.S.o. AKR Superfamily. 2019 May 8th, 2019; Available from: https://hosting.med.upenn.edu/akr/. 37. Nagase, T., et al., Prediction of the Coding Sequences of Unidentified Human Genes. III. The Coding Sequences of 40 New Genes (KIAA0081-KIAA0120) Deduced by Analysis of cDNA Clones from Human Cell Line KG-1. DNA Research, 1995. 2(1): p. 37-43. 38. Mills, K.I., et al., Identification of a retinoic acid responsive aldoketoreductase expressed in HL60 leukaemic cells. FEBS Letters, 1998. 440(1): p. 158-162. 39. DATABASE, T.H.G. AKR1C3 gene. 2020 [cited 2020 0401]; Available from: https://www.genecards.org/cgi-bin/carddisp.pl?gene=AKR1C3. 40. Tebay, L.E., et al., Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radical Biology and Medicine, 2015. 88: p. 108-146. 41. Atlas, T.H.P. Aldo-keto reductase family 1 member C3. 2020; Available from: https://www.proteinatlas.org/ENSG00000196139-AKR1C3. 42. NCBI. AKR1C3 aldo-keto reductase family 1 member C3 [ Homo sapiens (human) ]. 2020 3-Mar-2020; Available from: https://www.ncbi.nlm.nih.gov/gene/8644. 43. Azzarello, J.T., et al., Expression of AKR1C3 in renal cell carcinoma, papillary urothelial carcinoma, and Wilms' tumor. International journal of clinical and experimental pathology, 2010. 3(2): p. 147. 44. Birtwistle, J., et al., The aldo-keto reductase AKR1C3 contributes to 7, 12-dimethylbenz (a) anthracene-3, 4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2009. 662(1-2): p. 67-74. 45. Mahadevan, D., et al., Transcriptosome and serum cytokine profiling of an atypical case of myelodysplastic syndrome with progression to acute myelogenous leukemia. American journal of hematology, 2006. 81(10): p. 779-786. 46. Park, A.L., et al., Differential expression of type 2 3α/type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) in tumors of the central nervous system. International journal of clinical and experimental pathology, 2010. 3(8): p. 743-754. 47. Jansson, A.K., et al., 17β-Hydroxysteroid Dehydrogenase 14 Affects Estradiol Levels in Breast Cancer Cells and Is a Prognostic Marker in Estrogen Receptor–Positive Breast Cancer. Cancer research, 2006. 66(23): p. 11471-11477. 48. Lin, H.-K., et al., Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2 3α-hydroxysteroid dehydrogenase/type 5 17β-hydroxysteroid dehydrogenase); immunohistochemical detection in breast and prostate. Steroids, 2004. 69(13-14): p. 795-801. 49. Matsunaga, T., et al., Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-biological interactions, 2013. 202(1-3): p. 234-242. 50. Novotna, R., et al., Inactivation of the anticancer drugs doxorubicin and oracin by aldo–keto reductase (AKR) 1C3. Toxicology letters, 2008. 181(1): p. 1-6. 51. Suzuki, T., et al., In situ production of sex steroids in human breast carcinoma. Medical molecular morphology, 2007. 40(3): p. 121-127. 52. Nakamura, Y., et al., In situ androgen production in human gastric carcinoma-androgen synthesizing and metabolizing enzymes. Anticancer research, 2006. 26(3A): p. 1935-1939. 53. Dozmorov, M.G., et al., Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan. BMC cancer, 2010. 10(1): p. 672. 54. Sun, S.-Q., et al., Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Oncotarget, 2016. 7(30): p. 48050. 55. Lewis, M.J., J.P. Wiebe, and J.G. Heathcote, Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. Bmc Cancer, 2004. 4(1): p. 27. 56. Zakharov, V., et al., Suppressed expression of type 2 3alpha/type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) in endometrial hyperplasia and carcinoma. International journal of clinical and experimental pathology, 2010. 3(6): p. 608-617. 57. Martinez, I., et al., Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. European journal of cancer, 2007. 43(2): p. 415-432. 58. Zhong, T., et al., Aldo-keto reductase 1C3 (AKR1C3) is associated with the doxorubicin resistance in human breast cancer via PTEN loss. Biomedicine Pharmacotherapy, 2015. 69: p. 317-325. 59. Xiong, W., et al., Elevated expression of AKR1C3 increases resistance of cancer cells to ionizing radiation via modulation of oxidative stress. PloS one, 2014. 9(11). 60. Zhao, S.F., et al., AKR1C1‑3, notably AKR1C3, are distinct biomarkers for liver cancer diagnosis and prognosis: Database mining in malignancies. Oncology letters, 2019. 18(5): p. 4515-4522. 61. Nakarai, C., et al., Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer. Clinical and experimental medicine, 2015. 15(3): p. 333-341. 62. Wako, K., et al., Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. Journal of clinical pathology, 2008. 61(4): p. 448-454. 63. Hamid, A.R.A., et al., Aldo-keto reductase family 1 member C3 (AKR1C3) is a biomarker and therapeutic target for castration-resistant prostate cancer. Molecular Medicine, 2012. 18(11): p. 1449-1455. 64. Powell, K., et al., ERG/AKR1C3/AR constitutes a feed-forward loop for AR signaling in prostate cancer cells. Clinical Cancer Research, 2015. 21(11): p. 2569-2579. 65. Liu, C., et al., Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer research, 2015. 75(7): p. 1413-1422. 66. Tian, Y., et al., AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression. Diagnostic pathology, 2014. 9(1): p. 42. 67. Jernberg, E., et al., Characterization of prostate cancer bone metastases according to expression levels of steroidogenic enzymes and androgen receptor splice variants. PloS one, 2013. 8(11). 68. Fan, L., et al., The steroidogenic enzyme AKR1C3 regulates stability of the ubiquitin ligase Siah2 in prostate cancer cells. Journal of Biological Chemistry, 2015. 290(34): p. 20865-20879. 69. Zeng, C.-M., et al., Aldo–Keto Reductase AKR1C1–AKR1C4: Functions, Regulation, and Intervention for Anti-cancer Therapy. Frontiers in Pharmacology, 2017. 8(119). 70. Wang, B., et al., AKR1C3, a crucial androgenic enzyme in prostate cancer, promotes epithelial-mesenchymal transition and metastasis through activating ERK signaling. Urologic Oncology: Seminars and Original Investigations, 2018. 36(10): p. 472.e11-472.e20. 71. Byrns, M.C., et al., Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 2010. 118(3): p. 177-187. 72. Yoda, T., et al., 11β-Prostaglandin F2α, a bioactive metabolite catalyzed by AKR1C3, stimulates prostaglandin F receptor and induces slug expression in breast cancer. Molecular and Cellular Endocrinology, 2015. 413: p. 236-247. 73. Işeri, Ö.D., et al., Drug resistant MCF-7 cells exhibit epithelial-mesenchymal transition gene expression pattern. Biomedicine Pharmacotherapy, 2011. 65(1): p. 40-45. 74. Kim, S., et al., Slug promotes survival during metastasis through suppression of Puma-mediated apoptosis. Cancer research, 2014. 74(14): p. 3695-3706. 75. Penning, T.M., AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Molecular and Cellular Endocrinology, 2019. 489: p. 82-91. 76. Hevir-Kene, N. and T.L. Rižner, The endometrial cancer cell lines Ishikawa and HEC-1A, and the control cell line HIEEC, differ in expression of estrogen biosynthetic and metabolic genes, and in androstenedione and estrone-sulfate metabolism. Chemico-biological interactions, 2015. 234: p. 309-319. 77. Sinreih, M., N. Hevir, and T.L. Rižner, Altered expression of genes involved in progesterone biosynthesis, metabolism and action in endometrial cancer. Chemico-biological interactions, 2013. 202(1-3): p. 210-217. 78. Li, H., Narahara, H., 15-Deoxy-Δ12,14-prostaglandin J2 induces growth inhibition, cell cycle arrest and apoptosis in human endometrial cancer cell lines. International Journal of Molecular Medicine, 2013. 31.4: p. 778-788. 79. Tachibana, K., et al., The Role of PPARs in Cancer. PPAR research, 2008. 2008: p. 102737-102737. 80. Huebbers, C.U., et al., Upregulation of AKR1C1 and AKR1C3 expression in OPSCC with integrated HPV16 and HPV-negative tumors is an indicator of poor prognosis. International Journal of Cancer, 2019. 144(10): p. 2465-2477. 81. Peng, Q., et al., Mitogen-activated protein kinase signaling pathway in oral cancer. Oncology letters, 2018. 15(2): p. 1379-1388. 82. Burotto, M., et al., The MAPK pathway across different malignancies: a new perspective. Cancer, 2014. 120(22): p. 3446-3456. 83. Samatar, A.A. and P.I. Poulikakos, Targeting RAS–ERK signalling in cancer: promises and challenges. Nature Reviews Drug Discovery, 2014. 13(12): p. 928-942. 84. Crane, E.K. and K.-K. Wong, The therapeutic promise of anti-cancer drugs against the Ras/Raf/MEK/ERK pathway. Topics Anti-Cancer Res, 2013. 2: p. 63-94. 85. Gough, N.R., Focus Issue: Recruiting Players for a Game of ERK. Science Signaling, 2011. 4(196): p. eg9-eg9. 86. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. cell, 2009. 139(5): p. 871-890. 87. Yin, Y.D., et al., The Activity of SN33638, an Inhibitor of AKR1C3, on Testosterone and 17β-Estradiol Production and Function in Castration-Resistant Prostate Cancer and ER-Positive Breast Cancer. Frontiers in Oncology, 2014. 4(159). 88. Šmuc, T. and T.L. Rižner, Expression of 17β-hydroxysteroid dehydrogenases and other estrogen-metabolizing enzymes in different cancer cell lines. Chemico-Biological Interactions, 2009. 178(1): p. 228-233. 89. Forman, B.M., et al., 15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell, 1995. 83(5): p. 803-812. 90. Desmond, J.C., et al., The aldo-keto reductase AKR1C3 is a novel suppressor of cell differentiation that provides a plausible target for the non-cyclooxygenase-dependent antineoplastic actions of nonsteroidal anti-inflammatory drugs. Cancer research, 2003. 63(2): p. 505-512. 91. Doig, C.L., et al., Knockdown of AKR1C3 exposes a potential epigenetic susceptibility in prostate cancer cells. The Journal of steroid biochemistry and molecular biology, 2016. 155(Pt A): p. 47-55. 92. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603. 93. Chinni, S.R. and F.H. Sarkar, Akt inactivation is a key event in indole-3-carbinol-induced apoptosis in PC-3 cells. Clinical cancer research, 2002. 8(4): p. 1228-1236. 94. Molinolo, A.A., et al., Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clinical Cancer Research, 2007. 13(17): p. 4964-4973. 95. Freudlsperger, C., et al., Phosphorylation of AKT (S er473) serves as an independent prognostic marker for radiosensitivity in advanced head and neck squamous cell carcinoma. International journal of cancer, 2015. 136(12): p. 2775-2785. 96. Avan, A., et al., Role of Akt signaling in resistance to DNA-targeted therapy. World journal of clinical oncology, 2016. 7(5): p. 352. 97. Wang, S., et al., AKR1C2 and AKR1C3 mediated prostaglandin D2 metabolism augments the PI3K/Akt proliferative signaling pathway in human prostate cancer cells. Molecular and Cellular Endocrinology, 2008. 289(1): p. 60-66. 98. Penning, T.M., Aldo-Keto Reductase Regulation by the Nrf2 System: Implications for Stress Response, Chemotherapy Drug Resistance, and Carcinogenesis. Chemical research in toxicology, 2017. 30(1): p. 162-176. 99. Huang, C.-F., et al., Clinical Significance of Keap1 and Nrf2 in Oral Squamous Cell Carcinoma. PLOS ONE, 2013. 8(12): p. e83479. 100. Namani, A., et al., Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer. BMC cancer, 2018. 18(1): p. 46-46. 101. Chang, M.C., et al., Areca nut extract and arecoline induced the cell cycle arrest but not apoptosis of cultured oral KB epithelial cells: association of glutathione, reactive oxygen species and mitochondrial membrane potential. Carcinogenesis, 2001. 22(9): p. 1527-1535. 102. Thangjam, G.S. and P. Kondaiah, Regulation of oxidative-stress responsive genes by arecoline in human keratinocytes. Journal of Periodontal Research, 2009. 44(5): p. 673-682. 103. Chang, L.-Y., et al., Areca nut extracts increased the expression of cyclooxygenase-2, prostaglandin E2 and interleukin-1α in human immune cells via oxidative stress. Archives of Oral Biology, 2013. 58(10): p. 1523-1531. 104. Illeperuma, R.P., et al., Areca nut exposure increases secretion of tumor‐promoting cytokines in gingival fibroblasts that trigger DNA damage in oral keratinocytes. International journal of cancer, 2015. 137(11): p. 2545-2557. 105. Chang, M.-C., et al., The induction of prostaglandin E2 production, interleukin-6 production, cell cycle arrest, and cytotoxicity in primary oral keratinocytes and KB cancer cells by areca nut ingredients is differentially regulated by MEK/ERK activation. Journal of Biological Chemistry, 2004. 279(49): p. 50676-50683. 106. Chang, M.-C., et al., Areca nut components affect COX-2, cyclin B1/cdc25C and keratin expression, PGE2 production in keratinocyte is related to reactive oxygen species, CYP1A1, Src, EGFR and Ras signaling. PloS one, 2014. 9(7). 107. Hsieh, Y.-P., et al., Arecoline activates latent transforming growth factor β1 via mitochondrial reactive oxygen species in buccal fibroblasts: Suppression by epigallocatechin-3-gallate. Journal of the Formosan Medical Association, 2018. 117(6): p. 527-534. 108. Li, Y.-C., et al., Multifaceted mechanisms of areca nuts in oral carcinogenesis: the molecular pathology from precancerous condition to malignant transformation. Journal of Cancer, 2019. 10(17): p. 4054. 109. Kansanen, E., et al., The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology, 2013. 1(1): p. 45-49. 110. database, T.h.g. GeneCards. 2020 2020.04.10; Available from: https://www.genecards.org/Guide/Publications. 111. Polyak, K., et al., A model for p53-induced apoptosis. Nature, 1997. 389(6648): p. 300. 112. Rivera, A. and S.A. Maxwell, The p53-induced gene-6 (proline oxidase) mediates apoptosis through a calcineurin-dependent pathway. Journal of Biological Chemistry, 2005. 280(32): p. 29346-29354. 113. Drane, P., et al., Reciprocal down-regulation of p53 and SOD2 gene expression–implication in p53 mediated apoptosis. Oncogene, 2001. 20(4): p. 430-439. 114. Yoon, K.-A., Y. Nakamura, and H. Arakawa, Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. Journal of human genetics, 2004. 49(3): p. 134-140. 115. Liu, B., Y. Chen, and D.K.S. Clair, ROS and p53: a versatile partnership. Free Radical Biology and Medicine, 2008. 44(8): p. 1529-1535. 116. Field, J.K., et al., The Role of the p53 Tumor Suppressor Gene in Squamous Cell Carcinoma of the Head and Neck. Archives of Otolaryngology–Head Neck Surgery, 1993. 119(10): p. 1118-1122. 117. Cutilli, T., F. Papola, and A. Corbacelli, p53 overexpression and mutation, chemoresistance and patient survival in oral and maxillofacial squamous cell carcinoma. Journal of chemotherapy, 1997. 9(2): p. 123-124. 118. Kajita, M., K.N. McClinic, and P.A. Wade, Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Molecular and cellular biology, 2004. 24(17): p. 7559-7566. 119. Sarrió, D., et al., Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer research, 2008. 68(4): p. 989-997. 120. Ueno, H., et al., Tumourbudding'as an index to estimate the potential of aggressiveness in rectal cancer. Histopathology, 2002. 40(2): p. 127-132. 121. Brabletz, T., et al., Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and β-catenin. Cells tissues organs, 2005. 179(1-2): p. 56-65. 122. Kim, M.A., et al., Prognostic importance of epithelial–mesenchymal transition‐related protein expression in gastric carcinoma. Histopathology, 2009. 54(4): p. 442-451. 123. Bruyere, F., et al. Snail expression is an independent predictor of tumor recurrence in superficial bladder cancers. in Urologic Oncology: Seminars and Original Investigations. 2010. Elsevier. 124. Shih, J.-Y., et al., Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clinical Cancer Research, 2005. 11(22): p. 8070-8078. 125. Soltermann, A., et al., Prognostic significance of epithelial-mesenchymal and mesenchymal-epithelial transition protein expression in non–small cell lung cancer. Clinical Cancer Research, 2008. 14(22): p. 7430-7437. 126. Thiery, J.P., Epithelial–mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2002. 2(6): p. 442-454. 127. Ikenouchi, J., et al., Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. Journal of cell science, 2003. 116(10): p. 1959-1967. 128. Grille, S.J., et al., The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer research, 2003. 63(9): p. 2172-2178. 129. Krisanaprakornkit, S. and A. Iamaroon, Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN oncology, 2012. 2012: p. 681469-681469. 130. Iamaroon, A. and S. Krisanaprakornkit, Overexpression and activation of Akt2 protein in oral squamous cell carcinoma. Oral oncology, 2009. 45(10): p. e175-e179. 131. Hong, K.-O., et al., Inhibition of Akt activity induces the mesenchymal-to-epithelial reverting transition with restoring E-cadherin expression in KB and KOSCC-25B oral squamous cell carcinoma cells. Journal of experimental clinical cancer research, 2009. 28(1): p. 28. 132. Lee, Y.J. and H.J. Han, Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells. American Journal of Physiology-Renal Physiology, 2010. 298(5): p. F1263-F1275. 133. Xu, W., Z. Yang, and N. Lu, A new role for the PI3K/Akt signaling pathway in the epithelial-mesenchymal transition. Cell adhesion migration, 2015. 9(4): p. 317-324. 134. Bolós, V., et al., The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of cell science, 2003. 116(3): p. 499-511. 135. Morel, A.-P., et al., Generation of breast cancer stem cells through epithelial-mesenchymal transition. PloS one, 2008. 3(8). 136. Du, L., et al., Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene, 2016. 35(35): p. 4641-4652. 137. Shibue, T. and R.A. Weinberg, EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature reviews Clinical oncology, 2017. 14(10): p. 611. 138. Polyak, K. and R.A. Weinberg, Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 2009. 9(4): p. 265-273. 139. Ho, C.M., et al., ZEB1 as an indicator of tumor recurrence for areca quid chewing-associated oral squamous cell carcinomas. Journal of Oral Pathology Medicine, 2015. 44(9): p. 693-698. 140. Lin, W.-T., et al., Elevated Lin28B expression is correlated with lymph node metastasis in oral squamous cell carcinomas. Journal of Oral Pathology Medicine, 2015. 44(10): p. 823-830. 141. Chang, Y.-C., et al., Elevated vimentin expression in buccal mucosal fibroblasts by arecoline in vitro as a possible pathogenesis for oral submucous fibrosis. Oral Oncology, 2002. 38(5): p. 425-430. 142. Lee, S.-S., et al., Elevated snail expression mediates tumor progression in areca quid chewing-associated oral squamous cell carcinoma via reactive oxygen species. PloS one, 2013. 8(7): p. e67985-e67985. 143. Wang, T.Y., et al., Acquisition cancer stemness, mesenchymal transdifferentiation, and chemoresistance properties by chronic exposure of oral epithelial cells to arecoline. Oncotarget, 2016. 7(51): p. 84072-84081. 144. Seitz, H.K. and F. Stickel, Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Reviews Cancer, 2007. 7(8): p. 599-612. 145. Boffetta, P. and M. Hashibe, Alcohol and cancer. The Lancet Oncology, 2006. 7(2): p. 149-156. 146. Ogden, G.R., Alcohol and oral cancer. Alcohol, 2005. 35(3): p. 169-173. 147. Forsyth, C.B., et al., Alcohol stimulates activation of Snail, epidermal growth factor receptor signaling, and biomarkers of epithelial-mesenchymal transition in colon and breast cancer cells. Alcoholism, clinical and experimental research, 2010. 34(1): p. 19-31. 148. Lokich, J., What is the “best” platinum: cisplatin, carboplatin, or oxaliplatin? Cancer investigation, 2001. 19(7): p. 756-760. 149. Matsunaga, T., et al., Pathophysiological roles of aldo–keto reductases (AKR1C1 and AKR1C3) in development of cisplatin resistance in human colon cancers. Chemico-Biological Interactions, 2013. 202(1): p. 234-242. 150. Madhulaxmi, M., et al., Role of cisplatin in oral squamous cell carcinoma–A review. Journal of Advanced Pharmacy Education Research| Apr-Jun, 2017. 7(2). 151. Yang, Z., et al., Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clinical cancer research, 2006. 12(19): p. 5817-5825. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57894 | - |
dc.description.abstract | 人類醛固酮還原酶家族1成員C3 (Aldo-keto reductase family 1, member C3, AKR1C3)為醛酮還原酶(AKR)家族一員。醛酮還原酶(AKR)家族以NADPH為輔酶將來自食物和細胞內的脂肪類醛、酮和芳香類物質,還原成相對應的醇。AKR1C3蛋白分子量為36853Da,最早在human immature myeloid cell line被分離出來。AKR1C3在人的組織中表達位置,包括腎上腺、腦、腎、肝、肺、乳腺、胎盤、膽囊、小腸、十二指腸、結腸、脾、前列腺、和睾丸。最近研究指出,AKR1C3的表現與頭頸部癌症、食道癌、乳癌、非小細胞肺癌、肝癌、前列腺癌、子宮內膜癌的發生及發展有關。但並無文獻提到專門針對OSCC患者,其癌組織中AKR1C3蛋白值濃度,與OSCC患者預後之相關性。因此,本研究進一步檢測OSCC患者癌組織中AKR1C3蛋白值濃度是否和OSCC患者之腫瘤發展、復發及存活有關。 本研究利用口腔癌病患之組織病理切片進行免疫組織化學染色法(immunohistochemistry, IHC),測量93例OSCC癌組織及30例正常口腔黏膜 (normal mucosa) 中AKR1C3蛋白表現量。AKR1C3蛋白表現量以染色記分(LSs,定義為染色強度與染色指標的乘積)定義,染色記分越高表示OSCC組織中AKR1C3蛋白表現量愈多。ANOVA、卡方檢定(Chi-square test)、Kaplan-Meier 存活率方法及Cox proportional hazard regression model,來分析癌組織中AKR1C3蛋白表現量與OSCC患者臨床病理參數及存活率之相關性,並試圖尋找預測存活時間的獨立預後因子。 本研究發現,AKR1C3蛋白的染色記分(labeling score, LS)較高和患者有較大腫瘤 (P = 0.040)、有較高臨床分期 (P = 0.009) 、較差的分化 (P <0.001)、有淋巴血管的侵犯(P = 0.019)、有飲食酒精的習慣 (P <0.001)及有嚼食檳榔之口腔習慣 (P = 0.014) ,有統計學上有意義之相關。Kaplan-Meier存活分析發現, AKR1C3 labeling score> 58比AKR1C3 labeling score ≤ 58之OSCC患者,有較差的5年總存活率 (log-rank test, P = 0.011)。以Cox regression model 進行多變數分析發現,有飲食酒精的習慣(P =0.018)、AKR1C3 labeling score> 58 (P = 0.004)為影響OSCC患者存活時間的獨立預測因子。 本研究發現,OSCC患者組織中AKR1C3蛋白質表現量可以預測OSCC之腫瘤大小、臨床分期及其5年總存活率;同時,組織中AKR1B10蛋白質表現量與OSCC患者嚼食檳榔及飲酒之口腔習慣呈現正相關。因此OSCC患者組織中AKR1C3蛋白質表現量可以當作OSCC患者預後的指標。 | zh_TW |
dc.description.abstract | Aldo-keto reductase family 1 member C3 (AKR1C3) is one of the aldo-keto reductase superfamily. AKR1C3 can efficiently reduce aliphatic and aromatic aldehydes, but less active on hexoses. AKR1C3 was originally identified by Nagase from human immature myeloid cell lines in 1995. AKR1C3 is a cytosolic reductase with 36853 Da of a molecular weight. In normal human tissues, AKR1B10 is primarily expressed in epithelial tissues of brain, lung, breast, small intestine, duodenum, liver, gallbladder, spleen, adrenal gland, kidney, colon, prostate, testis, and placenta. Elevated expression of AKR1C3 is found in a wide variety of human tumors, such as head-and-neck, esophageal, non-small cell lung, breast, liver, prostate, and endometrial cancers. However, no specific report has been reported on AKR1C3 protein expression in OSCCs. In this study, we investigated whether AKR1C3 expression in OSCCs can be correlated with clinicopathological parameters, and used as a prognostic biomarker. In this study, we used immunohistochemical staining (IHC) to detect the AKR1C3 protein levels in 93 OSCCs and 30 normal oral mucosa (NOM). The leveling score (LS) of AKR1C3 protein expression was evaluated semi-quantitatively based on the proportion of positive-staining cells to the total number of counted cancer or epithelial cells (labeling index) and the staining intensity. The correlation between AKR1C3 LSs and clinicopathological parameters of OSCC patients was analyzed by Student’s t-test, ANOVA, Kaplan-Meier and Multivariate Cox regression analyses. In this study, we found that the AKR1C3 labeling score (LS) for OSCCs (69±45) was significantly higher than that for NOM (10±14, p < 0.001). High expression of AKR1C3 was significantly correlated with the large tumor size (p = 0.040), advanced TNM stage (p = 0.009), poorly differentiated (p <0.001), lymphovascular invasion (p = 0.019), alcohol consumption ((p =0.001), and areca quid chewing habit (p = 0.014). A multivariate analysis identified that higher AKR1C3 LS > 58 (p = 0.004) was significantly correlated with 5-year overall survival. This study found that AKR1C3 protein level in OSCC tissues could be used to predict the tumor size, clinical stage and the prognosis of OSCC patients. Therefore, we conclude that AKR1C3 protein level in OSCC tissues may be a valuable biomarker and molecular therapeutic target for OSCC patients in Taiwan. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T07:10:06Z (GMT). No. of bitstreams: 1 U0001-1607202012032900.pdf: 2772260 bytes, checksum: 4e6d9003b4e9534145b9f501a9090344 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝...............................i 中文摘要...........................ii ABSTRACT..........................iv CONTENTS..........................vi 圖目錄.............................ix 表目錄.............................x 第1章 序論及文獻回顧..............1 1.1 口腔鱗狀細胞癌(Oral Squamous Cell Carcinoma, OSCC)概論...1 1.1.1 口腔鱗狀上皮細胞癌簡介...................................1 1.1.2 口腔鱗狀細胞癌之流行病學.................................2 1.1.3 口腔鱗狀細胞癌之危險因子及基因變異........................3 1.1.4 口腔鱗狀細胞癌之臨床分期.................................5 1.1.5 現行對口腔鱗狀細胞之治療及預後............................6 1.1.6 口腔癌前病變(pre-cancerous lesion; oral potentially malignant disorder, OPMD) ...7 1.2 AKR1C3蛋白概論..........................8 1.2.1 HSD 簡介................................8 1.2.2 AKR家族(AKR family)簡介.................9 1.2.3 AKR1C3遺傳學及表觀遺傳學.................9 1.2.4 AKR1C3蛋白之結構與功能...................10 1.3 AKR1C3與癌症之關係.......................10 1.3.1 AKR1C3於人類癌症之發現...................10 1.3.2 AKR1C3致癌機轉之研究.....................13 第2章 材料與方法...............................15 2.1 實驗樣本.................................15 2.2 標本之固定與包埋..........................15 2.3 免疫組織化學染色(immunohistochemistry stain)...15 2.3.1 反應原理..............................15 2.3.2 初級抗體(primary antibody)的選擇.......16 2.3.3 抗原抗體結合之偵測系統..................16 2.3.4 實驗步驟 ..............................16 2.4 免疫組織化學染色後之觀察與記錄...........18 2.4.1 觀察...................................18 2.4.2 染色程度之定量..........................19 2.4.3 臨床變數之紀錄..........................19 2.4.4 統計分析................................20 第3章 結果....................................21 3.1 AKR1C3於口腔鱗狀細胞癌(OSCC)及正常口腔上皮(NOM,normal oral mucosa)之表現...21 3.2 AKR1C3免疫組織化學染色結果與患者臨床及組織病理各項參數之關係..................21 3.2.1 病患年齡................................21 3.2.2 病患性別................................22 3.2.3 腫瘤原發位置(primary site)...............22 3.2.4 腫瘤TNM臨床分期..........................22 3.2.5 腫瘤組織病理切片之風險因子(risk factors)...23 3.3 AKR1C3免疫組織化學染色與臨床參數之單變數(univariate)、多變數(multivariate)分析 ...25 3.4 AKR1C3表現與存活時間分析(survival analysis)..........................26 第4章 討論................................................................27 4.1 AKR1C3於口腔鱗狀細胞癌組織切片之免疫組織化學染色分布....................27 4.2 AKR1C3於口腔鱗狀細胞癌組織切片中具較高之表現量..........................27 4.3 由臨床參數的危險因子的統計意義推測AKR1C3在口腔鱗狀細胞癌中可能的作用機轉...28 4.4 AKR1C3做為口腔鱗狀細胞癌的預後預測因子..........................32 4.5 AKR1C3做為口腔鱗狀細胞癌治療可能的藥物投與標的...................32 第5章 結論..........................................................35 第6章 附表與附圖.....................................................36 參考文獻...............................................................46 | |
dc.language.iso | zh-TW | |
dc.title | AKR1C3於口腔鱗狀細胞癌中之表現 | zh_TW |
dc.title | Expression of AKR1C3 in oral squamous cell carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭彥彬(Yen-Ping Kuo),張龍昌(Lung-Chang Chang) | |
dc.subject.keyword | 醛固酮還原酶家族1成員C3,口腔癌,口腔鱗狀上皮細胞癌,總存活,預後, | zh_TW |
dc.subject.keyword | Aldo-keto reductase family 1 member C3 (AKR1C3),oral cancer,oral squamous cell carcinoma (OSCC),overall survival,prognosis, | en |
dc.relation.page | 53 | |
dc.identifier.doi | 10.6342/NTU202001569 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1607202012032900.pdf 目前未授權公開取用 | 2.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。