Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57873
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林江珍(Jiang-Jen Lin)
dc.contributor.authorYa-Chi Wangen
dc.contributor.author王雅琪zh_TW
dc.date.accessioned2021-06-16T07:08:48Z-
dc.date.available2019-08-11
dc.date.copyright2014-08-11
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citation1. Beija, M., Marty, J. D. & Destarac, M. RAFT/MADIX polymers for the preparation of polymer/inorganic nanohybrids. Prog. Polym. Sci. 2011, 36, 845–886.
2. Spitalsky, Z., Tasis, D., Papagelis, K. & Galiotis, C. Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.
3. Giannelis, E. P. Polymer layered silicate nanocomposites. Adv. Mater. 1996, 8, 29–35.
4. Alexandre, M. & Dubois, P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. 2000, 28, 1–63.
5. Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010, 6, 711–723.
6. Pinnavaia, T. J. Intercalated clay catalysts. Science 1983, 220, 365–371.
7. Laszlo, P. Chemical reactions on clays. Science 1987, 235, 1473–1477.
8. Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 1998, 396, 353–356.
9. Celis, R., Hermosin, M. C., Carrizosa, M. J. & Cornejo, J. Inorganic and organic clays as carriers for controlled release of the herbicide hexazinone. J. Agric. Food Chem. 2002, 50, 2324–2330.
10. Kiraly, Z., Veisz, B., Mastalir, A. & Kofarago, G. Preparation of ultrafine palladium particles on cationic and anionic clays, mediated by oppositely charged surfactants: catalytic probes in hydrogenations. Langmuir 2001, 17, 5381–5387.
11. Giannelis, E. P. Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl. Organometal Chem. 1998, 12, 675–680.
12. Balogh, M. & Laszlo, P. in Organic chemistry using clays. Springer-Verlag, Berlin Heidelberg, 1993.
13. Mitchell, J. K. & Soga, K. in Fundamentals of Soil Behavior, John Wiley & Sons Inc, New York, 1993.
14. Theng, B. K. G. in Formation and Properties of Clay-Polymer Complexes, 2nd ed., Elsevier Science, Oxford, 2012.
15. Sorina-Alexandra, G., Horina, J. & Ancuta, B. New organophilicagents of montmorillonite used as reinforcing agent in epoxynanocompostes. Polym. Test 2008, 27, 100–13.
16. Theng, B. K. G. in The chemistry of clay–organic reactions. John Wiley & Sons, New York, 1974.
17. Olphen, H. V. in An introduction to clay colloid chemistry, 2nd ed. John Wiley & Sons, New York, 1977.
18. Bohning, M. et al. Dielectric study of molecular mobility in poly (propylene-graft- maleic anhydride)/clay nanocomposites. Macromolecules 2005, 38, 2764–2774.
19. Robello, D. R., Yamaguchi, N., Blanton, T. & Barnes, C. Spontaneous formation of an exfoliated polystyrene-clay nanocomposite using a star-shaped polymer. J. Am. Chem. Soc. 2004, 126, 8118–8119.
20. Tien, Y. I. & Wei, K. H. The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane. J. Appl. Polym. Sci. 2002, 86, 1741–1748.
21. LeBaron, P. C., Wang, Z & Pinnavaia, T. J. Polymer-layered silicate nanocomposites: an overview. Appl. Clay Sci. 1999, 15, 11–29.
22. Yang, Y., Zhu, Z. K., Yin, J., Wan, X. Y. & Qi, Z. E. Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer 1999, 40, 4407–4414.
23. Maiti, M., Bandyopadhyay, A. & Bhowmick, A. K. Preparation and characterization of nanocomposites based on thermoplastic elastomers from rubber-plastic blends. J. Appl. Polym. Sci. 2006, 99, 1645–1656.
24. Subramani, S., Lee, J. Y., Choi, S. W. & Kim, J. H. Waterborne trifunctionalsilane-terminated polyurethane nanocomposite with silane-modified clay. J. Polym. Sci. B: Polym. Phys. 2007, 45, 2747–2761.
25. Zeng, C. & Lee, L. J. Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 2001, 34, 4098–4103.
26. Vaia, R. A., Teukolsky, R. K. & Giannelis, E. P. Interlayer structure and molecular environment of alkylammonium layered silicates. Chem. Mater. 1994, 6, 1017–1022.
27. Hotta, S. & Paul, D. R. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer 2004, 45, 7639–7654.
28. Imai Y. et al. High-modulus poly(ethylene terephthalate)/expandable fluorine mica nanocomposites with a novel reactive compatibilizer. Chem. Mater. 2002, 14, 477–479.
29. Chang, J. H., Jang, T. G., Ihn, K. J., Lee, W. K. & Sur. G. S. Poly(vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J. Appl. Polym. Sci. 2003, 90, 3208–3214.
30. Kim, M. H. et al. Synthesis and material properties of syndiotactic polystyrene/organophilic clay nanocomposites. J. Appl. Polym. Sci. 2004, 92, 2144–2150.
31. Bottino F. A. et al. Polystyrene-clay nanocomposites prepared with polymerizable imidazolium surfactants. Macromol. Rapid Commun. 2003, 24, 1079–1084.
32. Gilman J. W. et al. Polymer/layered silicate nanocomposites from thermally stable trialkylimidazolium-treated montmorillonite. Chem. Mater. 2002, 14, 3776–3785.
33. Wang, K., Wang, L., Wu, J., Chen, L. & He, C. Preparation of highly exfoliated epoxy/clay nanocomposites by “slurry compounding”: process and mechanisms. Langmuir 2005, 21, 3613–3618.
34. Lin, J. J., Cheng, I. J., Wang, R. & Lee, R. J. Tailoring basal spacings of montmorillonite by poly(oxyalkylene)diamine intercalation. Macromolecules 2001, 34, 8832−8834.
35. Lin, J. J., Cheng, I. J. & Chou, C. C. Critical conformational change of poly(oxypropylene)diamines in layered aluminosilicate confinement. Macromol. Rapid Commun. 2003, 24, 492−495.
36. Chou, C. C., Shieu, F. S. & Lin, J. J. Preparation, organophilicity, and self- assembly of poly(oxypropylene)amine-clay hybrids. Macromolecules 2003, 36, 2187−2189.
37. Lin, J. J. & Chen, Y. M. Amphiphilic properties of poly(oxyalkylene)amine- intercalated smectite aluminosilicates. Langmuir 2004, 20, 4261−4264.
38. Chiou, J. Y., Hsu, R. S., Chiu, C. W. & Lin, J. J. A stepwise mechanism for intercalating hydrophobic organics into multilayered clay nanostructures, RSC Adv. 2013, 3, 12598–12603.
39. Chou, C. C. & Lin, J. J. One-step exfoliation of montmorillonite via phase inversion of amphiphilic copolymer emulsion. Macromolecules 2005, 38, 230−233.
40. Chu, C. C., Chiang, M. L., Tsai, C. M. & Lin, J. J. Exfoliation of montmorillonite clay by Mannich polyamines with multiple quaternary salts. Macromolecules 2005, 38, 6240−6243.
41. Lin, J. J., Chu, C. C., Chiang, M. L. & Tsai, W. C. First isolation of individual silicate platelets from clay exfoliation and their unique self-assembly into fibrous arrays. J. Phys. Chem. B 2006, 110, 18115−18120.
42. Chiu, C. W., Chu, C. C., Cheng, W. T. & Lin, J. J. Exfoliation of smectite clays by branched polyamines consisting of multiple ionic sites. Eur. Polym. J. 2008, 44, 628–636.
43. Chiu, C. W., Chu, C. C., Dai, S. A. & Lin, J. J. Self-piling silicate rods and dendrites from high aspect-ratio clay platelets. J. Phys. Chem. C 2008, 112, 17940–17944.
44. Priolo, M. A., Gamboa, D. & Grunlan, J. C. Transparent clay-polymer nano brick wall assemblies with tailorable oxygen barrier. ACS Appl. Mater. Interfaces 2010, 2, 312–320.
45. Priolo, M. A., Gamboa, D., Holder, K. M. & Grunlan, J. C. Super gas barrier of transparent polymer-clay multilayer ultrathin films. Nano Lett. 2010, 10, 4970–4974.
46. Tetsuka, H., Ebina, T., Nanjo, H. & Mizukami, F. Highly transparent flexible clay films modified with organic polymer: structural characterization and intercalation properties. J. Mater. Chem. 2007, 17, 3545–3550.
47. Rao, Y. & Blanton, T. N. Polymer nanocomposites with a low thermal expansion coefficient. Macromolecules 2008, 41, 935–941.
48. Karaman, V. M., Privalko, E. G., Privalko, V. P., Kubies, D., Puffr, R. & Jerome, R. Stretching calorimetry studies of poly(ε-caprolactone)/organoclay nanocomposites. Polymer 2005, 46, 1943–1948.
49. Uhl, F. M., Davuluri, S. P., Wong, S. C. & Webster, D. C. Polymer films possessing nanoreinforcements via organically modified layered silicate. Chem. Mater. 2004, 16, 1135–1142.
50. Walther, A., Bjurhager, I., Malho, J. M., Ruokolainen, J., Berglund, L. & Ikkala, O. Supramolecular control of stiffness and strength in lightweight high-performance nacre-mimetic paper with fire-shielding properties. Angew. Chem. Int. Ed. 2010, 49, 6448–6453.
51. Walther A., et al. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 2010, 10, 2742–2748.
52. Liu A., Walther, A., Ikkala, O., Belova, L. & Berglund, L. A. Clay Nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 2011, 12, 633–641.
53. Podsiadlo P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.
54. Podsiadlo, P., Tang, Z., Shim, B. S. & Kotov, N. A. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 2007, 7, 1224–1231.
55. Okada, A. & Usuki, A. Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 2006, 291, 1449–1476.
56. Haraguchi, K., Takehisa, T. & Fan, S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly(N-isopropylacrylamide) and clay. Macromolecules 2002, 35, 10162–10171.
57. Haraguchi, K. & Takehisa, T. Nanocomposite hydrogels: a unique organic- inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 2002, 14, 1120–1124.
58. Haraguchi, K., Farnworth, R., Ohbayashi, A & Takehisa, T. Compositional effects on mechanical properties of nanocomposite hydrogels composed of poly (N,N-dimethylacrylamide) and clay. Macromolecules 2003, 36, 5732–5741.
59. Lin, J. J., Chou, C. C. & Lin, J. L. Lengthy rod formation from a poly (oxyalkylene)amine-intercalated smectite clay by a self-aligning mechanism. Macromol. Rapid Commun. 2004, 25, 1109–1112.
60. Lin, J. J, Chen, Y. M., Tsai, W.C. & Chiu, C. W. Self-assembly of lamellar clays to hierarchical microarrays. J. Phys. Chem. C 2008, 112, 9637–9643.
61. Chan, Y. N., Dai, S. A. & Lin, J. J. Simultaneous occurrence of self-assembling silicate skeletons to wormlike microarrays and epoxy ring-opening polymerization. Macromolecules 2009, 42, 4362–4365.
62. Chan, Y. N., Hsu, R. S. & Lin, J. J. Mechanism of silicate platelet self-organization during clay-initiated epoxy polymerization. J. Phys. Chem. C 2010, 114, 10373–10378.
63. Lin, J. J., Chu, C. C., Chou, C. C. & Shieu, F. S. Self-assembly nanofibers from random silicate platelets. Adv. Mater. 2005, 17, 301–304.
64. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.
65. Bates, F. S. & Fredrickson, G. H. Block copolymer thermodynamics: theory and experiment. Annu. Rev. Phys. Chem. 1990, 41, 525–557.
66. Hayward, R. C. & Pochan, D. J. Tailored assemblies of block copolymers in solution: it is all about the process. Macromolecules 2010, 43, 3577–3584.
67. Kuo, S. W. Hydrogen bond-mediated self-assembly and supramolecular structures of diblock copolymer mixtures. Polym. Int. 2009, 58, 455–464.
68. Tetsuka, H., Ebina T. & Mizukami, F. Highly luminescent flexible quantum dot–clay films. Adv. Mater. 2008, 20, 3039–3043.
69. Haraguchi, K. & Li, H. J. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels. Angew. Chem. Int. Ed. 2005, 44, 6050–6054 (2005).
70. Ebina, T. & Mizukami, F. Flexible transparent clay films with heat-resistant and high gas-barrier properties. Adv. Mater. 2007, 19, 2450–2453 (2007).
71. Tetsuka, H., Ebina, T., Tsunoda, T., Nanjo, H. & Mizukami, F. Flexible organic electroluminescent devices based on transparent clay films. Nanotechnology 2007, 18, 355701–355704.
72. Shikinaka, K. et al. Flexible, transparent nanocomposite film with a large clay component and ordered structure obtained by a simple solution-casting method. Langmuir 2010, 26, 12493–12495.
73. Nam, H. J., Ebina, T. & Mizukami, F. Formability and properties of self-standing clay film by montmorillonite with different interlayer cations. Colloids and Surfaces A: Physicochem. Eng. Aspects 2009, 346, 158–163.
74. Walther, A. et al. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 2013, 5, 3738–3747.
75. Lu, S. Y. & Hamerton, I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog. Polym. Sci. 2002, 27, 1661–1712.
76. Kiliaris, P. & Papaspyrides, C.D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35, 902–958.
77. Yao, H. B., Tan, Z. H., Fang, H. Y. & Yu, S. H. Artificial nacre-like bionanocomposite films from the self-assembly of chitosan–montmorillonite hybrid building blocks. Chem. Int. Ed. 2010, 49, 10127–10131 (2010).
78. Chiu, C. W. & Lin, J. J. Self-assembly behavior of polymer-assisted clays. Prog. Polym. Sci. 2012, 37, 406–444.
79. Liu, T., Chen, B. & Evans, J. R. G. Ordered assemblies of clay nano-platelets. Bioinsp. Biomim. 2008, 3, 016005.
80. Walley, P., Zhang, Y. & Evans, J. R. G. Self-assembly of montmorillonite platelets during drying. Bioinspir. Biomim. 2012, 7, 046004.
81. Osman, M. A., Mittal, V. & Lusti, H. R. The aspect ratio and gas permeation in polymer-layered silicate nanocomposites. Macromol. Rapid Commun. 2004, 25, 1145–1149.
82. Rees, S. W., Zhou, Z. & Thomas, H. R. The influence of soil moisture content variations on heat losses from earth-contact structures: an initial assessment. Build. Environ. 2001, 36, 157–165.
83. De Vries, D. A. in Physics of Plant Environment, North-Holland Publishing Co., Amsterdam, 1966.
84. Wang, Y. C., Huang, T. K., Tung, S. H., Wu, T. M. & Lin, J. J. Self-assembled clay films with a platelet-void multilayered nanostructure and flame-blocking properties. Sci. Rep., 2013, DOI: 10.1038/srep02621.
85. Chiu, C. W., Huang, T. K, Wang, Y. C., Alamani, B. G. & Lin, J. J. Intercalation strategies in clay/polymer hybrids. Prog. Polym. Sci., 2013, 39, 443 –485.
86. Fafard, J. et al. Adsorption of indole on kaolinite in nonaqueous media: organoclay preparation and characterization, and 3D-RISM-KH molecular theory of solvation investigation. J. Phys. Chem. C 2013, 117, 18556–18566.
87. Cha, J. H., Kwon, M., Lee, W. & Lee, H. Mechanical performance and electrochemical properties of clathrate hydrate reinforced by clay particles. J. Phys. Chem. C 2011, 115, 15655–15660.
88. Wheeler, P. A., Wang, J. & Mathias, L. J. Poly (methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem. Mater. 2006, 18, 3937–3945.
89. Nam, H. J., Ebina, T., Ishii, R., Nanjo, H. & Mizukami, F. Self-standing film formability of various clays. Clay Sci. 2007, 13, 159–165.
90. Tombacz, E. & Szekeres, M. Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes. Appl. Clay Sci. 2004, 27, 75–94.
91. Mitchell, R. L. in Chemistry of Soil, Oxford & IBH, Calcutta, 1964.
92. Yukselen, Y. & Kaya, A. Water Air Soil Pollut. 2003, 145, 155–168.
93. Parfitt, G. D. in Dispersion of Powders in Liquids with Special Reference to Pigments, Elsevier Publishing Company, Amsterdam-London-New York, 1969.
94. Barthlott, W. & Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 1997, 202, 1–8.
95. Gao, X. & Jiang, L. Biophysics: water-repellent legs of water striders, Nature 2004, 432, 36.
96. Kim, S. H., Lee, S. Y. & Yang, S. M. Janus microspheres for a highly flexible and impregnable water-repelling interface, Angew. Chem. Int. Ed. 2010, 49, 2535–2538.
97. Genze, J. & Efimenko, K. Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers, Science 2000, 290, 2130–2133.
98. Singh, S., Houston, J., Van Swol, F. & Brinker, C. J. Superhydrophobicity: drying transition of confined water, Nature 2006, 442, 526.
99. Shi, F., Wang, Z. Q. & Zhang, X. Combining a layer-by-layer assembling technique with electrochemical deposition of gold aggregates to mimic the legs of water striders, Adv. Mater. 2005, 17, 1005–1009.
100. Lee, C. H., Johson, N., Drelich, J. & Yap, Y. K. The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration, Carbon 2011, 49, 669–676.
101. Chen, H., Zhang, F., Fu, S. & Duan, X. In situ microstructure control of oriented layered double hydroxide monolayer films with curved hexagonal crystals as superhydrophobic materials, Adv. Mater. 2006, 18, 3089–3093.
102. Haraguchi, K., Li, H. J. & Song, L. Unusually high hydrophobicity and its changes observed on the newly-created surfaces of PNIPA/clay nanocomposite hydrogels, J. Colloid Interface Sci. 2008, 326, 41–50.
103. Mahadika, S. A., Kavalea, M. S., Mukherjeeb, S. K. & Rao, A. V. Transparent superhydrophobic silica coatings on glass by sol–gel method, Appl. Surf. Sci. 2010, 257, 333–339.
104. Teare, D. O. H., Spanos, C. G., Ridley, P., Kinmond, E. J., Roucoules, V. & Badyal, J. P. S. Pulsed plasma deposition of superhydrophobic nanospheres, Chem. Mater. 2002, 14, 4566–4571.
105. Jiang, L., Zhao, Y. & Zhai, J. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics, Angew. Chem. Int. Ed. 2004, 43, 4438–4441.
106. Lau, K. K. S., et al. Superhydrophobic carbon nanotube forests, Nano Lett. 2003, 3, 1701–1705.
107. Hsu, C. P., Chang, L. Y., Chiu, C. W., Lee, P. T. C. & Lin, J. J. Facile fabrication of robust superhydrophobic epoxy film with polyamine dispersed carbon nanotubes, ACS Appl. Mat. Interfaces 2013, 5, 538–545.
108. Lin, J. J., Chu, C. C., Chiang, M. L. & Tsai, W. C. Manipulating Assemblies of high-aspect- ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect, Adv. Mater. 2006, 18, 3248–3252.
109. Lin, L., et al. Bio-inspired hierarchical macromolecule–nanoclay hydrogels for robust underwater superoleophobicity, Adv. Mater. 2010, 22, 4826–4830.
110. Wang, Y. C. & Lin, J. J. Clay films with variable metal ions and self-assembled silicate layer-void nanostructures, RSC Adv. 2014, 4, 6356–6362.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57873-
dc.description.abstract本研究旨在探討具有高片徑比及高表面電荷之脫層型奈米矽片其自組裝排列特性。由於具不同金屬反離子 (metal counter-ion) 之奈米矽片具有其獨特的自我組裝排列特性,利用此特性可發展出特殊的功能性材料,如抗火焰性之黏土薄膜及超疏水薄膜。
第一部分為探討脫層型之奈米矽片與層狀型蒙脫土於自組裝排列成膜之差異性。奈米矽片之結構為單一片狀型態且均勻分散在水溶液中的無機黏土,具高長徑比及表面電荷性質,由 SEM 證實脫層型奈米矽片具有高度規整排列性,層狀型蒙脫土則無。此薄膜具有矽片/孔洞交錯之微結構,經由密度量測實驗證實薄膜孔洞含量可達 40 % 且具有低熱傳導係數 (0.17 W m-1 K-1)。此薄膜經由火焰燃燒測試,其表面不被火焰貫穿,未來可應用於防火材。
第二部份為將鈉型奈米矽片與一價的鋰和鉀、二價的鎂和鈣、及三價的鋁金屬離子進行離子交換反應,並透過界面電位及粒徑的量測,探討奈米黏土表面電荷之差異性對於溶液分散穩定性及自組裝排列特性之的影響。結果顯示,當金屬離子價數增加時,矽片界面電位之絕對值有顯著降低,粒徑增加及溶液穩定性低之趨勢。將溶液製備成膜後,由 SEM 證實三價型奈米矽片膜之微結構規整度最低,二價型奈米矽片次之,一價型奈米矽片排列最為規整,此結果顯示溶液分散狀態與黏土自我排列整齊度具有高度之正相關。
第三部份為超疏水複材的備製,將鋁離子型奈米矽片、聚烯基丁二酸酐 (poly(isobutylene)-g-succinic anhydride)及三胺基聚丙烯醚 (poly(oxypropylene)- triamine) 行縮合的聚異丁烯胺共聚物及雙酚 A 二縮水甘油醚型環氧樹脂 (diglycidyl ether of bisphenol-A) 混合液,經由塗佈與硬化反應可形成具有強度之薄膜。由 SEM 及親疏水角量測證實,藉由操控黏土表面粗糙度以及聚異丁烯胺與環氧樹脂之疏水特性,此系列超疏水複合薄膜表面具有微米及奈米級化微結構,且其接觸角高於 150o。
zh_TW
dc.description.abstractThe research is mainly dedicated to the self-assembling behavior of the exfoliated nanosilicate platelets with various metal counter-ions (NSP-OM, where M = metal counter-ions). We were able to develop a variety of functional materials by manipulating the differences in the self-assembly of these NSP species.
In the first part of the research, we reported an organic-free clay film capable of both flame- and heat-shielding. Traditionally, polymeric composite films with a high loading of nano-size silicates can hardly meet the increasingly stringent fireproof and smoke-free requirements during burning. Thus, it is desirable to prepare pure clay films that can block air, heat, and flame. Our clay film was prepared from the self-assembly of sodium form of nanosilicate platelets (NSP-ONa) derived from the exfoliation of natural sodium montmorillonite (Na+-MMT). The self-assembled film has a highly regular multilayered nanostructure over a large area and an appreciable volume of air entrapped in between. The combination of regular structure and substantial air volume (40 %) contributes to the low thermal conductivity (0.17 W m-1 K-1) and flame blocking property of the film. It was demonstrated that the film can shield flame over hour duration and prevent temperature rising on the backside of film. This remarkable clay film has a myriad of uses including gas barrier, heat insulator, and fireproof devices.
In the second part, the sodium counter-ions of NSP-ONa were subsequently exchanged with various metal ions including lithium(I), potassium(I), magnesium(II), calcium(II), and aluminum(III) to afford the corresponding species of NSP-OM. In solution, their ionic properties were characterized by measuring zeta potentials over pH to reveal the electrokinetic shifting from -50 to -5 mV. As the valence of the metal counter-ion increases, the zeta potential (in absolute value) of the silicate surface is apparently lowered, indicating an increase in the particle size and a decrease in the solution stability. Under the process of solution coating and evaporating, the silicate platelets self-assembled into thin films of 20–100
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:08:48Z (GMT). No. of bitstreams: 1
ntu-103-F98549008-1.pdf: 12822960 bytes, checksum: 81b833c62bd36244715a0e796e1a9b4a (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
謝辭 ii
中文摘要 iii
Abstract iv
List of Figures ix
List of Tables xvii
List of Schemes xviii
List of Movies xix
Chapter 1 Introduction 1
1.1 Fundamental structure of layered clays 1
1.2 Modification of clays by intercalation and exfoliation 2
1.3 Property-enhanced clay/polymer nanocomposites 7
1.4 Literature review on the self-assembling behavior of clays 11
1.4.1 Self-assembly into rod-like structure 11
1.4.2 Self-assembly of clay in epoxy matrices during curing 12
1.4.3 Self-stacking of exfoliated platelets into dendritic microstructure 14
1.4.4 Transformation of exfoliated platelets under electron beam bombardment 15
Chapter 2 Self-assembled Clay Films with a Platelet–Void Multilayered Nanostructure and Flame-Blocking Properties 18
2.1 Introduction 18
2.2 Experimental 20
2.2.1 Materials 20
2.2.2 General procedure for the exfoliation of layered silicate Na+-MMT into random platelets suspended in water 20
2.2.3 General procedure for the preparation of an aqueous suspension of clay 20
2.2.4 General procedure for the preparation of the large free-standing film 21
2.2.5 Characterization 21
2.3 Results and Discussion 23
2.3.1 Self-assembled NSP clay films 23
2.3.2 Characterization of nanostructures in the films by WAXRD 25
2.3.3 Multilayered nanostructure of alternating layers of platelets and voids 28
2.3.4 The ability of the films to block a flame and heat 29
2.4 Conclusion 34
Chapter 3 Clay Films with Variable Metal Ions and Self-Assembled Silicate Layer-Void Nanostructures 36
3.1 Introduction 36
3.2 Experimental 39
3.2.1 Materials 39
3.2.2 General procedures for preparing aqueous dispersion of NSP-OM 39
3.2.3 Preparation of self-assembled film by water evaporation 40
3.2.4 Characterization 40
3.3 Results and Discussion 42
3.3.1 Ionic exchange reaction of NSP-ONa with various metal chlorides 42
3.3.2 Electrokinetic properties of NSP-OM 43
3.3.3 XRD analysis on the d-spacing of the self-assembled NSP-OM films 46
3.3.4 Two-dimensional X-ray analysis on the alignment of NSP-OM films 48
3.3.5 SEM observation on the morphology of NSP-OM films 48
3.3.6 Multilayered nanostructure of alternating layers of platelets and voids 50
3.4 Conclusion 54
Chapter 4 Tailoring Water-Repellent Polymer Surface by Clay Nanostructural Roughness and Hydrophobic Poly(isobutylene) Tethering 55
4.1 Introduction 55
4.2 Experimental 58
4.2.1 Materials 58
4.2.2 Synthesis of PIB-T403 imide Copolymer 58
4.2.3 General procedures for the preparation of NSP-OAl dispersion in isopropyl alcohol 58
4.2.4 One-pot preparation of organoclay coatings 59
4.2.5 Characterization 59
4.3 Results and Discussion 61
4.3.1 Ionic exchange reaction of NSP-ONa with aluminum chlorides and surface morphology 61
4.3.2 Synthesis of PIB-amine copolymer 65
4.3.3 Film robustness with epoxy resin modification 66
4.4 Conclusion 71
Chapter 5 Summary 72
References 73
Appendix…. 85
dc.language.isozh-TW
dc.subject黏土膜zh_TW
dc.subject抗火焰zh_TW
dc.subject超疏水zh_TW
dc.subject界面電位zh_TW
dc.subject自組裝排列zh_TW
dc.subject脫層zh_TW
dc.subject離子交換反應zh_TW
dc.subjectsuperhydrophobicen
dc.subjectself-assemblyen
dc.subjectclay filmen
dc.subjectflame retardancyen
dc.subjectionic exchange reactionen
dc.subjectsurface potentialen
dc.subjectexfoliationen
dc.title奈米矽片黏土其自組裝排列性質探討及應用zh_TW
dc.titleStudies on the Self-Assembling Behavior and Applications of Exfoliated Nanoscale Silicate Plateletsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝國煌(Kuo-Huang Hsieh),邱文英(Wen-Yen Chiu),蔣見超(Raymond Chien-Chao Tsiang),郭炳林(Ping-Lin Kuo),戴憲弘(Sheng-Hong A. Dai)
dc.subject.keyword脫層,自組裝排列,黏土膜,抗火焰,離子交換反應,界面電位,超疏水,zh_TW
dc.subject.keywordexfoliation,self-assembly,clay film,flame retardancy,ionic exchange reaction,surface potential,superhydrophobic,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2014-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
Appears in Collections:高分子科學與工程學研究所

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
12.52 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved