請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57869完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林唯芳 | |
| dc.contributor.author | Yu-Chieh Tu | en |
| dc.contributor.author | 涂煜杰 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:08:33Z | - |
| dc.date.available | 2015-07-11 | |
| dc.date.copyright | 2014-07-11 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-08 | |
| dc.identifier.citation | 1. J. Hansen, M. Sato, R. Ruedy, K. Lo, D. W. Lea and M. Medina-Elizade, “Global temperature change,” Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14288.
2. D. Mulvaney and P. Robbins, “Green energy,” Sage, 2011. 3. Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu and C.-W. Chen, “Interfacial nanostructuring on the performance of polymer/TiO2 nanorods bulk heterojunction solar cells,” Journal of the American Chemical Society, 2009, 131, 3644. 4. H.-C. Liao, C.-S. Tsao, T.-H. Lin, C.-M. Chuang, C.-Y. Chen, U-S. Jeng, C.-H. Su, Y.-F. Chen and W.-F. Su, “Quantitative nanoorganized structural evolution for a high efficiency bulk heterojunction polymer solar cell,” Journal of the American Chemical Society, 2011, 133, 13064. 5. E. D. Wachsman and K. T. Lee, “Lowering the temperature of solid oxide fuel cells,” Science, 2011, 334, 935. 6. J. Larminie, and A. Dicks, “Fuel cell systems explained,” Second edition, Wiley, 2003. 7. Anthony R. West , “Basic solid state chemistry”, Second edition, John Wiley & Sons, 2002. 8. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin and J. C. Diniz da Costa, “Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation,” Journal of Membrane Science, 2008, 320, 13. 9. S.-L. Zhang, C.-X. Li, C.-J. Li, G.-J. Yang and Z.-H. Han, “Scandia-stabilized zirconia electrolyte with improved interlamellar bonding by high-velocity plasma spraying for high performance solid oxide fuel cells,” Journal of Power Sources, 2013, 232, 123. 10. X. Xu, C. Xia, S. Huang and D. Peng, “YSZ thin films deposited by spin-coating for IT-SOFCs,” Ceramics International, 2005, 31, 1061. 11. J. Wang, Z. Lu, K. Chen, X. Huang, N. Ai, J. Hu, Y. Zhang and W. Su, “Study of slurry spin coating technique parameters for the fabrication of anode-supported YSZ Films for SOFCs,” Journal of Power Sources, 2007, 164, 17. 12. B. C. H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for SOFC operation at 500°C,” Solid State Ionics, 2000, 129, 95 13. D. Lin, Q. Wang, K. Peng and L. L. Shaw, “Phase formation and properties of composite electrolyte BaCe0.8Y0.2O3-δ-Ce0.8Gd0.2O1.9 for intermediate temperature solid oxide fuel cells,” Journal of Power Sources, 2012, 205, 100. 14. B. C. H. Steele and A. Heinzel, “Materials for fuel-cell technologies,” Nature, 2001, 414, 345. 15. P. Charpentier, P. Fragnaud, D. M. Schleich and E. Gehain, “Preparation of thin film SOFCs working at reduced temperature,” Solid State Ionics, 2000, 135, 373. 16. A. Boudghene Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews, 2002, 6, 433. 17. N. Ai, Z. Lu, K. Chen, X.Huang, Y. Liu, R. Wang, W. Su, “Preparation of Sm0.2Ce0.8O1.9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC,” Journal of Membrane Science, 2006 286, 255 18. S. C Singhal and K. Kendall, “High temperature solid oxide fuel cells: Fundamental, design and applications,” Elsevier, 2003 19. F.-Y. Wang, S. Chen, Q. Wang, S. Yu, S. Cheng, “Study on Gd and Mg co-doped ceria electrolyte for intermediate temperature solid oxide fuel cells,” Catalysis Today, 2004, 97, 189 20. Q. L. Liu, K. A. Khor, S. H. Chan and X. J. Chen, “Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilayer electrolyte prepared by wet ceramic co-sintering process,” Journal of Power Sources, 2006, 162, 1036. 21. T. Ishihara, T. Shibayama, M. Honda, H. Nishiguchi and Y. Takita, “Intermediate temperature solid oxide fuel cells using LaGaO3 electrolyte,” Journal of The Electrochemical Society, 2000, 147, 1332. 22. M.-F. Hsu, L.-J. Wu, J.-M. Wu, Y.-H. Shiu and K.-F. Lin, “Solid oxide fuel cell fabricated using all-perovskite materials,” Electrochemical and Solid-State Letters, 2006, 9, A193. 23. E. D. Wachsman, P. Jayaweera, N. Jiang, D.M. Lowe and B.G. Pound, “Stable high conductivity ceria/bismuth oxide bilayered electrolytes”, Journal of the Electrochemical Society, 1997, 144, 233. 24. D. W. Jung, K. L. Duncan and E. D. Wachsman, “Effect of total dopant concentration and dopant ratio on conductivity of (DO1.5)x-(WO3)y-(BiO1.5)1-x-y,” Acta Materialia, 2010, 58, 355. 25. M. Leszczynska, X. Lin, W. Wrobel, M. Malys, M. Krynski, S. T. Norberg, S. Hull, F. Krok and I. Abrahams, “Thermal Variation of Structure and Electrical Conductivity in Bi4YbO7.5,” Chemistry of Materials, 2013, 25, 326. 26. P. Singh, K. D. Sung, Y. A. Park, N. Hur and J. H. Jung, “Magnetic and electric properties of Ba-doped BiFeO3 epitaxial thin films prepared by pulsed laser deposition,” Journal of the Korean Physical Society, 2009, 55, 609. 27. J. Wu and J. Wang, “BiFeO3 thin films deposited on LaNiO3-buffered SiO2/Si substrate,” Journal of the American Ceramic Society, 2010, 93, 1422. 28. K. Rodrigo, S. Heiroth, M. Lundberg, N. Bonanos, K. Mohan Kant, N. Pryds, L. Theil Kuhn, V. Esposito, S. Linderoth, J. Schou and T. Lippert, “Electrical characterization of gadolinia-doped ceria films grown by pulsed laser deposition,” Applied Physics A: Materials Science and Processing, 2010, 101, 601. 29. A. M. Azad, S. Larose and S. A. Akbar, “Bismuth oxide-based solid electrolytes for fuel cells,” Journal of Materials Science, 1994, 29, 4135. 30. C. N. R. Rao, G. V. S. Rao and S. Ramdas, “Phase transformations and electrical properties of bismuth sesquioxide,” The Journal of Physical Chemistry, 1969, 73, 672. 31. H. A. Harwig and A. G.. Gerards, “Electrical properties of theα, β, γ, and δ phases of bismuth sesquioxide,” Journal of Solid State Chemistry, 1978, 26, 265. 32. P. Shuk, H.-D. Wiemh¨ofer, U. Guth, W. G¨opel and M. Greenblatt, “Oxide ion conducting solid electrolytes based on Bi2O3,” Solid State Ionics, 1996, 89, 179. 33. E. D. Wachsman, G.. R. Ball, N. Jiang and D. A. Stevenson, “Structure and Defect Studies in Solid Oxide Electrolytes,” Solid State Ionics, 1992, 52, 213. 34. I. Bloom, M.C. Hash, J.P. Zebrowski, K.M. Myles and M. Krumpelt, “Oxide-ion conductivity of bismuth aluminate,” Solid State Ionics, 1992, 53-56, 739. 35. S. Zha, J. Cheng, Y. Liu, X. Liu and G. Meng, “Electrical properties of pure and Sr-doped Bi2Al4O9 ceramics,” 2003, 156, 197. 36. C.-F. Lin, W.-F. Su, C.-I. Wu and I.-C. Cheng, “Organic, inorganic and hybrid solar cells principles and practice,” Wiley, 2012. 37. A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and M. D. McGehee, “Polymer-based Solar Cells”, Materials Today, 2007, 10, 28. 38. C. J. Brabec and J. R. Durrant, “Solution-processed organic solar cells,” Materials Research Society Buletinl., 2008, 33, 671. 39. S. Günes, H. Neugebauer and N. S. Sariciftci, “Conjugated polymer-based organic solar cells,” Chemical Reviews, 2007, 107, 1324. 40. M. R. Reyes, K. Kim and A. L. Carroll, “High-efficiency photovoltaic devices based on annealed pol(3-hexylthiophene) and (1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 blends,” Applied Physics Letter, 2005, 87, 083506. 41. J. H. Tsai, Y. C. Lai, T. Higashihara, C. J. Lin, M. Ueda and W. C. Chen, “Enhancement of P3HT/PCBM Photovoltaic efficiency using the Surfactant of triblock copolymer containing poly(3-hexylthiophene) and poly(4-vinyltriphenylamine) segments,” Macromolecules, 2010, 43, 6085. 42. Chin-Wei Liang, Wei-Fang Su and Leeyih Wang, “Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer,” Applied Physics Letter, 2009, 95, 133303. 43. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, “For the bright future—bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%,” Advanced Materials, 2010, 22, E135 44. Z. He, C. Zhong, X. Huang, W.-Y. Wong, H. Wu, L. Chen, S. Su and Y. Cao, “Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells,” Advanced Materials, 2011, 23, 4636. 45. Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Natural Photonics, 2012, 6, 591 46. Y. C. Huang, S. Y. Chuang, M. C. Wu, H. L. Chen, C. W. Chen and W. F. Su, “Quantitative nanoscale monitoring the effect of annealing process on the morphology and optical properties of poly(3-hexylthiophene)/(6,6)-phenyl C61-butyric acid methyl ester thin film used in photovoltaic devices,” Journal of Applied Physics, 2009, 106, 034506. 47. Y. C. Huang, W. C. Yen, Y. C. Liao, Y. C. Yu, C. C. Hsu, M. L. Ho, P. T. Chou and W. F. Su, “Band gap aligned conducting interface modifier enhances the performance of thermal stable polymer-TiO2 nanorod solar cell,” Applied Physics Letter, 2010, 96, 123501. 48. W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, “Hybrid nanorod-polymer Solar cells,” Science, 2002, 295, 2425. 49. P. Wang, A. Abrusci, H. M. P. Wong, M. Svensson, M. R. Andersson and N. C. Greenham, “Photoinduced charge transfer and efficient solar energy conversion in a blend of a red polyfluorene copolymer with CdSe Nanoparticles,” Nano Letter, 2006, 6, 1789. 50. S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley and G.. Rumbles,“Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% Efficiency,” Nano Letter., 2010, 10, 239. 51. N. Kudo, S. Honda, Y. Shimazaki, H. Ohkita, H. Benten and S. Ito, “Improvement of charge injection efficiency in organic-inorganic hybrid solar cells by chemical modification of metal oxide with organic molecules,” Applied Physics Letter, 2007, 90, 183513. 52. T.-W. Zeng, Y.-Y. Lin, H.-S. Lo, C.-W. Chen, C.-H. Chen, S.-C. Liou, H.-Y. Huang and W.-F. Su, “ A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices,” Nanotechnology, 2006, 17, 5387. 53. M.-C. Wu, H.-H. Lo, H.-C. Liao, S. Chen, Y.-Y. Lin, W.-C. Yen, T.-W. Zeng, Y.-F. Chen, C.-W. Chen and W.-F. Su, “Using scanning probe microscopy to study the effect of molecular weight of poly(3-hexylthiophene) on the performance of poly(3-hexylthiophene):TiO2 nanorod photovoltaic devices,” Solar Energy Materials and Solar Cells, 2009, 93, 869. 54. P. Ravindran, R. Vidya, A. Kjekshus, H. Fjellvag and O. Eriksson, “Theoretical investigation of magnetoelectric behavior in BiFeO3,” Physical Review B, 2006, 74, 224412. 55. T. L. Thompson and J. T. Yates, “ Surface science studies of the photoactivation of TiO2-new photochemical processes,” Chemical Reviews, 2006, 106, 4428. 56. J. Huang, W. Cheuk, Y. Wu, F. S. C. Lee and W. Ho, “Fabrication of Bi-Doped TiO2 spheres with ultrasonic spray pyrolysis and investigation of their visible-light photocatalytic properties,” Journal of Nanotechnology, 2012, 7, 214783. 57. J. Li, N. Lu, X. Quan, S. Chen and H. Zhao, “Facile method for fabricating boron-doped TiO2 nanotube array with enhanced photoelectrocatalytic properties,” Industrial & Engineering Chemistry Research, 2008, 47 , 3804. 58. G. Benko, B. Skarman, R. Wallenberg, A. Hagfeldt, V. Sundstrom and A. P. Yartsev, “Particle size and crystallinity dependent electron injection in fluorescein 27-sensitized TiO2 films,” Journal of Physics Chemistry B, 2003, 107, 1370. 59. H. Tian, L. Hu, C. Zhang, S. Chen, J. Sheng, L. Mo, W. Liu and S. Dai, “Enhanced photovoltaic performance of dye-sensitized solar cells using a highly crystallized mesoporous TiO2 electrode modified by boron doping,” Journal of Materials Chemistry, 2011, 21, 863. 60. Z. Dai and Y. Akishige, “Electrical properties of multiferroic BiFeO3 ceramics synthesized by spark plasma sintering,” Journal of Physics D: Applied Physics, 2010, 43, 445403. 61. M. J. Verkerk, K. Keizer and A. J. Burggraaf, “High oxygen ion conduction in of the Bi203-Er203 system sintered oxides,” Journal of Applied Electrochemistry, 1980, 10, 81. 62. Y. Teraoka, H. M. Zhang and N. Yamazoe, “Mixed ionic-electronic conductivity of Lal-xSrxCol-yFeyO3-δ perovskite-type oxides,” Materials Research Bulletin, 1988, 23, 51. 63. K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, “ Electrical properties of ceria-based oxides and their application to solid oxide fuel cells,” Solid State lonics, 1992, 52, 165. 64. M B. Suresh and R. Johnson, “Structural and electrical properties of co-doped zirconia electrolyte for intermediate temperature solid oxide fuel cell application,” International Journal of Energy Research, 2012, 36. 1291. 65. Y.-T. Lu and W.-F. Su, “Synthesis, phase transformation and dielectric properties of sol–gel derived Bi2Ti2O7 ceramics,” Materials Chemistry and Physics, 2003, 80, 632. 66. P. N. Murgatroyd, “Theory of space-charge-limited current enhanced by Frenkel effect,” Journal of Physics D, 1970, 3, 151. 67. B. J. Zeches, M. D. Rossell, J. X. Zhang, A. J. Hatt, Q. He, C.-H. Yang, A. Kumar, C. H. Wang, A. Melville, C. Adamo, G. Sheng, Y.-H. Chu, J. F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L. Q. Chen, D. G. Schlom, N. A. Spaldin, L. W. Martin and R. Ramesh, “A strain-driven morphotropic phase boundary in BiFeO3,” Science, 2009, 326, 977. 68. A. S. Poghossian, H. V. Abovian, P. B. Avakian, S. H. Mkrtchian and V. M. Haroutunian, “Bismuth ferrites: New materials for semiconductor gas sensors,” Sensors and Actuators B, 1991, 4, 545. 69. M. Bibes and A. Barthelemy, “The room-temperature manipulation of magnetization by an electric field using the multiferroic BiFeO3 represents an essential step towards the magnetoelectric control of spintronics devices,” Nature Materials , 2008, 7, 425. 70. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou and J.-M. Liu, “Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles,” Advances Materials, 2007, 19, 2889. 71. Y. Ding, T.-H. Wang, W.-C. Yang, T.-C. Lin, C.-S. Tu, Y.-D. Yao and K.-T. Wu, “Magnetization, magnetoelectric effect, and structure transition in BiFeO3 and (Bi0.95 La0.05)FeO3,” Ieee Transactions on Magnetics, 2011, 47, 513. 72. M. M. Kumar, V. R. Palkar, K. Srinivas and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic,” Applied Physics Letters, 2000, 76, 2764. 73. Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen and J.-M. Liu, “Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering,” Applied Physics Letters, 2004, 84,1731. 74. S. T. Zhang, M. H. Lu, D. Wu, Y. F. Chen and N. B. Ming, “ Larger polarization and weak ferromagnetism in quenched BiFeO3 ceramics with a distorted rhombohedral crystal structure,” Applied Physics Letters, 2005, 87, 262907.1 75. M. S. Bernardo, T. Jardiel, M. Peiteado, A. C. Caballero and M. Villegas, “Reaction pathways in the solid state synthesis of multiferroic BiFeO3,” Journal of the European Ceramic Society, 2011, 31, 3047. 76. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M.Wuttig and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science, 2003, 299, 1719. 77. Y. Wang, Q.-H. Jiang, H.-C. He and C.-W. Nan, “Multiferroic BiFeO3 thin films prepared via a simple sol-gel method,” Applied Physics Letters, 2006, 88, 142503-1. 78. W. F. Su, Principles of Polymer Design and Synthesis, Springer, 2013, Chapter 5. 79. L. Fang, J. Liu, S. Ju, F. Zheng, W. Dong and M. Shen, “Experimental and theoretical evidence of enhanced ferromagnetism in sonochemical synthesized BiFeO3 nanoparticles,” Applied Physics Letters, 2010, 97, 242501-1. 80. A. K. Kim, S. H. Han, H.-W. Kang, H.-G. Lee, J. S. Kim and C. I. Cheon, “Dielectric and magnetic properties of BiFeO3 ceramics prepared by hydrothermal synthesis,” Ceramics International, 2012, 38S, S397. 81. P. Hayes and T. Yamashita, “Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials,” Applied Physics Letters, 2008, 254, 2441. 82. G. Liu, C. Sun, L. Cheng, Y. Jin, H. Lu, L. Wang, S. C. Smith, G. Q. Lu and H.-M. Cheng, “Efficient promotion of anatase TiO2 Photocatalysis via bifunctional surface-terminating Ti-O-B-N structures,” Journal of Physics Chemistry C, 2009, 113, 12317. 83. P. D. Cozzoli, A. Kornoeski and H. Weller, “Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods,” Journal of the American Chemical Society, 2003, 125, 14539. 84. H. Geng, S. Yin, X. Yang, Z. Shuai and B. Liu, “Geometric and electronic structures of the boron-doped photocatalyst TiO2,” Journal of Physics: Condensed Matter, 2006, 18, 87. 85. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and Applications,” Chemical Reviews, 2007, 107, 2891. 86. T. Ohsaka, F. Izumi and Y. Fujiki, “Raman Spectrum of Anatase, TiO2,” Journal of Raman Spectroscopy, 1978, 7, 321. 87. W. Wei, Y. Dai and B. Huang, “First-principles characterization of Bi-based photocatalysts: Bi12TiO20, Bi2Ti2O7, and Bi4Ti3O12,” Journal of Physical Chemistry C, 2009, 113, 5658. 88. Z. Zhao, J. Tian, D. Wang, X. Kang, Y. Sang, H. Liu, J. Wang, S. Chen, R. I. Boughton and H. Jiang, “UV-visible-light-activated photocatalysts based on Bi2O3/Bi4Ti3O12/TiO2 double-heterostructured TiO2 nanobelts, “Journal of Materials Chemistry, 2012, 22, 23395. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57869 | - |
| dc.description.abstract | The bismuth-based metal oxides, such as BiFeO3 (BFO) and Bi/B-doped TiO2 are potential candidates for electrolyte of low temperature solid oxide fuel cell and solution processable hybrid solar cell, respectively. In this study, we synthesize bismuth-based metal oxides, and investigate the material characteristics and the cell characteristics.
For low temperature solid oxide fuel cells, we prepared BFO as electrolyte. The material was synthesized using solution approach. Bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and iron nitrate nonahydrate (Fe(NO3)3.9H2O) were dissolved in the mixture of 2-ethoxyethanol and acetic acid at 70°C for 30 min. After evaporating the solvent, the BFO was calcined at 500°C for 2 hrs in air. The air calcined BFO was pressed into a disk which showed a pure BFO perovskite structure after sintered at either 850°C or 900°C. The BFO was coated with 100 micron yttria-stabilized zirconia (YSZ) buffer layer to avoid hydrogen reduction of BFO. This bilayer electrolyte exhibits 1.6 times increasing in maximum power density as compared with pure YSZ due to its perovskite structure, when Ni-YSZ anode and lanthanum strontium cobalt ferrite cathode were used in the fuel cell at 650°C. TiO2 nanorods were synthesized to fabricate hybrid P3HT:TiO2 solar cells. The TiO2 nanorods were synthesized using sol-gel process in the presence of oleic acid surfactant at 98℃ for 9 hrs. The size of TiO2 nanocrystal is about 35 nm in length and 5 nm in diameter. The insulating oleic acid on TiO2 nanorods was replaced by pyridine (as-synthesized TiO2) for good charge transport between P3HT and TiO2 in the application of hybrid P3HT:TiO2 nanorods solar cells. In order to improve the power conversion efficiency (PCE) of P3HT:TiO2 solar cell, we have further increased the crystallinity of anatase TiO2 nanorods. Two novel approaches: (1) ripening and (2) bismuth/boron doping for TiO2 nanorods were explored. The crystallinity of the as-synthesized TiO2 nanorods was increased through ripening (120℃, 24 hrs) by using an autoclave reactor while the size of nanocrystal was not significantly changed. The bismuth doped TiO2 (Bi-doped TiO2) and boron doped TiO2 nanorods (B-doped TiO2) were synthesized using the same sol-gel process of as synthesized TiO2 nanorods. The PCE of P3HT:TiO2 solar cells was increased by 1.31 times and 1.79 times under A. M. 1.5 illumination for ripened and B-doped TiO2, respectively, as compared with as-synthesized TiO2. The B-doped TiO2 has the highest mobility and PCE, mainly due to the presence of partially reduced Ti4+ by boron atom with delocalized electrons. W4-dye is a promising way for modifying the interface between P3HT and TiO2 charge transport further. The Bi-doped TiO2 has higher Jsc as compared with B-doped TiO2, mainly due to the presence of improvement of electron density under TiO2. The PCE of solar cell made of W4-dye modified TiO2 nanorods has been increased by 1.33 times and 1.30 times for Bi-doped TiO2 and B-doped TiO2, respectively, as compared with that of as-synthesized TiO2. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:08:33Z (GMT). No. of bitstreams: 1 ntu-103-D96527009-1.pdf: 3094629 bytes, checksum: f17157cdbf8451b341f00bdf15e83a37 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 I
Abstract III Acknowledgement VI Table of Contents VII List of Figures IX List of Tables XI Chapter 1 Introduction 1 1.1 Green Energy 1 1.2 Solid Oxide Fuel Cell 2 1.2.1 Principle of Solid Oxide Fuel Cell 2 1.2.2 State of Art of Solid Oxide Fuel Cell 4 1.2.2.1 Fluorite-Type Structure 5 1.2.2.2 Perovskite-Type Structure 9 1.2.2.3 Structures of Bismuth-Based Electrolytes 10 1.3 Solar Cell 14 1.3.1 Principle of Bulk Heterojunction Solar Cells 14 1.3.2 State of Art of Solar Cell 16 1.4 Motivation 20 1.4.1 Bismuth Iron Oxide (BFO) as Electrolyte Used in Low Temperature (≤650°C) Solid Oxide Fuel Cell 20 1.4.2 Bismuth/boron Doped TiO2 for High Efficiency Polymer-Inorganic Nanoparticle Solar Cell 21 Chapter 2 Experimental Section 22 2.1 Solid Oxide Fuel Cell 22 2.1.1 Material 22 2.1.2 Synthesis and Characterization of BiFeO3 23 2.1.3 Fabrication and Characterization of Anode-Supported Solid Oxide Fuel Cell 31 2.2 Polymer-Nanoparticle Hybrid Solar Cell 32 2.2.1 Material 32 2.2.2 Synthesis and Characterization of Bi/ B Doped TiO2 Nanorods 33 2.2.3 Fabrication and Characterization of P3HT:TiO2 Solar Cell 38 Chapter 3 Results and Discussion 40 3.1 Low Temperature Solid Oxide Fuel Cell 40 3.1.1 Characterization of BiFeO3 Powder 40 3.1.2 Characterization of NiO-8YSZ / 8YSZ / BiFeO3 / LSCF-GDC Cell 51 3.2 Hybrid Solar Cell 57 3.2.1 Characterization of TiO2 Nanorods 57 3.2.2 Characterization of Performance of P3HT:TiO2 Solar Cells 69 Chapter 4 Conclusions 73 4.1 Solid Oxide Fuel Cell 73 4.2 P3HT:TiO2 Nanorods Solar Cell 73 Chapter 5 Recommendation 75 5.1 Improve the Power Density of Fuel Cell 75 5.1.1 Composite Cathode Based on BFO-YSZ for Low Temperature Solid Oxide Fuel Cell 75 5.2 Improve the Performance of Solar Cell 75 5.2.1 Synthesis of Bismuth and Boron Co-doped TiO2 Nanorods 75 5.2.2 Synthesis of Bismuth Titanate Nanoparticles 76 5.3 Synthesis of High Crystalline Bismuth-Doped TiO2 Nanorods for Photocatalysts 76 Chapter 6 References 78 Curriculum Vitae of Yu-Chieh Tu 93 | |
| dc.language.iso | en | |
| dc.subject | 鐵酸鉍 | zh_TW |
| dc.subject | 固態燃料電池 | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 聚三己基?吩 | zh_TW |
| dc.subject | 太陽能電池 | zh_TW |
| dc.subject | TiO2 | en |
| dc.subject | BiFeO3 | en |
| dc.subject | solar cell | en |
| dc.subject | poly (3-hexylthiophene) | en |
| dc.subject | solid oxide fuel cell | en |
| dc.title | 鉍化合物用於綠色能源的研究 | zh_TW |
| dc.title | Bismuth Based Materials for Green Energy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳明忠,曹正熙,鄭淑芬,趙基揚 | |
| dc.subject.keyword | 鐵酸鉍,固態燃料電池,二氧化鈦,聚三己基?吩,太陽能電池, | zh_TW |
| dc.subject.keyword | BiFeO3,solid oxide fuel cell,TiO2,poly (3-hexylthiophene),solar cell, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-09 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
