請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57861
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 丁建均(Jian-Jiun Ding) | |
dc.contributor.author | Heng-Sheng Lin | en |
dc.contributor.author | 林恆陞 | zh_TW |
dc.date.accessioned | 2021-06-16T07:08:04Z | - |
dc.date.available | 2020-08-04 | |
dc.date.copyright | 2020-08-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-07-24 | |
dc.identifier.citation | [1] Y. Wei, J. Feng, X. Liang, M.-M. Cheng, Y. Zhao, and S. Yan, “Object region mining with adversarial erasing: A simple classification to semantic segmentation approach,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 1568–1576. [2] Y. Wei, X. Liang, Y. Chen, X. Shen, M.-M. Cheng, J. Feng, Y. Zhao, and S. Yan, “Stc: A simple to complex framework for weakly-supervised semantic segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 11, pp. 2314–2320, 2016. [3] X. Wang, S. You, X. Li, and H. Ma, “Weakly-supervised semantic segmentation by iteratively mining common object features,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 1354–1362. [4] Z. Ren, S. Gao, L.-T. Chia, and I. W.-H. Tsang, “Region-based saliency detection and its application in object recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 5, pp. 769–779, 2013. [5] D. Zhang, D. Meng, L. Zhao, and J. Han, “Bridging saliency detection to weakly supervised object detection based on self-paced curriculum learning,” arXiv preprint arXiv:1703.01290, 2017. [6] J. Zhao, Y. Chen, H. Feng, Z. Xu, and Q. Li, “Infrared image enhancement through saliency feature analysis based on multi-scale decomposition,” Infrared Physics Technology, vol. 62, pp. 86–93, 2014. [7] W.-M. Ke, C.-R. Chen, and C.-T. Chiu, “Bita/swce: Image enhancement with bilateral tone adjustment and saliency weighted contrast enhancement,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 3, pp. 360–364, 2010. [8] J. Zhao, Y. Chen, H. Feng, Z. Xu, and Q. Li, “Fast image enhancement using multi-scale saliency extraction in infrared imagery,” Optik, vol. 125, no. 15, pp. 4039–4042, 2014. [9] L. Itti, “Automatic foveation for video compression using a neurobiological model of visual attention,” IEEE transactions on image processing, vol. 13, no. 10, pp. 1304–1318, 2004. [10] S. Li, M. Xu, Y. Ren, and Z. Wang, “Closed-form optimization on saliency-guided image compression for hevc-msp,” IEEE Transactions on Multimedia, vol. 20, no. 1, pp. 155–170, 2017. [11] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, “Salient object detection: A discriminative regional feature integration approach,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp. 2083–2090. [12] W. Zhu, S. Liang, Y. Wei, and J. Sun, “Saliency optimization from robust background detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 2814–2821. [13] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, “Saliency detection via graph-based manifold ranking,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp. 3166–3173. [14] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE transactions on pattern analysis and machine intelligence, vol. 34, no. 10, pp. 1915–1926, 2011. [15] Q. Yan, L. Xu, J. Shi, and J. Jia, “Hierarchical saliency detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp. 1155–1162. [16] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440. [17] X. Huang, C. Shen, X. Boix, and Q. Zhao, “Salicon: Reducing the semantic gap in saliency prediction by adapting deep neural networks,” in 2015 IEEE International Conference on Computer Vision (ICCV), 2015, pp. 262–270. [18] R.Zhao,W.Ouyang,H.Li,andX.Wang,“Saliencydetectionbymulti-contextdeep learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1265–1274. [19] N. Liu and J. Han, “Dhsnet: Deep hierarchical saliency network for salient object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 678–686. [20] M. Cornia, L. Baraldi, G. Serra, and R. Cucchiara, “Predicting human eye fixations via an lstm-based saliency attentive model,” IEEE Transactions on Image Processing, vol. 27, no. 10, pp. 5142–5154, 2018. [21] N. Liu and J. Han, “A deep spatial contextual long-term recurrent convolutional network for saliency detection,” IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3264–3274, 2018. [22] M. Braham and M. Van Droogenbroeck, “Deep background subtraction with scene-specific convolutional neural networks,” in 2016 international conference on systems, signals and image processing (IWSSIP). IEEE, 2016, pp. 1–4. [23] T. Minematsu, A. Shimada, H. Uchiyama, and R.-i. Taniguchi, “Analytics of deep neural network-based background subtraction,” Journal of Imaging, vol. 4, no. 6, p. 78, 2018. [24] D. Sakkos, H. Liu, J. Han, and L. Shao, “End-to-end video background subtraction with 3d convolutional neural networks,” Multimedia Tools and Applications, vol. 77, no. 17, pp. 23 023–23 041, 2018. [25] L. A. Lim and H. Y. Keles, “Foreground segmentation using convolutional neural networks for multiscale feature encoding,” Pattern Recognition Letters, vol. 112, pp. 256–262, 2018. [26] T.N.KipfandM.Welling,“Semi-supervisedclassificationwithgraphconvolutional networks,” arXiv preprint arXiv:1609.02907, 2016. [27] L. A. Lim and H. Y. Keles, “Learning multi-scale features for foreground segmentation,” Pattern Analysis and Applications, pp. 1–12, 2019. [28] X. Wang, L. Liu, G. Li, X. Dong, P. Zhao, and X. Feng, “Background subtraction on depth videos with convolutional neural networks,” in 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–7. [29] M.C.Bakkay,H.A.Rashwan,H.Salmane,L.Khoudour,D.Puigtt,andY.Ruichek, “Bscgan: Deep background subtraction with conditional generative adversarial networks,” in 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018, pp. 4018–4022. [30] J.A.SuykensandJ.Vandewalle,“Leastsquaressupportvectormachineclassifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999. [31] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Su ̈sstrunk, “Slic superpixels,” Tech. Rep., 2010. [32] D. A. Reynolds, “Gaussian mixture models.” Encyclopedia of biometrics, vol. 741, 2009. [33] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks on node classification,” in International Conference on Learning Representations, 2019. [34] K. Xu, C. Li, Y. Tian, T. Sonobe, K.-i. Kawarabayashi, and S. Jegelka, “Representation learning on graphs with jumping knowledge networks,” arXiv preprint arXiv:1806.03536, 2018. [35] X. Li, L. Zhao, L. Wei, M.-H. Yang, F. Wu, Y. Zhuang, H. Ling, and J. Wang, “Deepsaliency: Multi-task deep neural network model for salient object detection,” IEEE transactions on image processing, vol. 25, no. 8, pp. 3919–3930, 2016. [36] Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille, “The secrets of salient object segmentation,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014. [37] G. Li and Y. Yu, “Visual saliency based on multiscale deep features,” in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015. [38] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp. 303–338, 2010. [39] J. Zhang, S. Sclaroff, Z. Lin, X. Shen, B. Price, and R. Mech, “Unconstrained salient object detection via proposal subset optimization,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 5733–5742. [40] G.LiandY.Yu,“Deepcontrastlearningforsalientobjectdetection,”inProceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 478–487. [41] M. Amirul Islam, M. Kalash, and N. D. Bruce, “Revisiting salient object detection: Simultaneous detection, ranking, and subitizing of multiple salient objects,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7142–7150. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57861 | - |
dc.description.abstract | 在計算機視覺中,顯著性偵測模擬了人類的視覺系統並且廣泛運用在許多影像 處理的運用上,例如適應性影像壓縮、物件辨識、影像搜尋及物件偵測。 在過去,顯著性偵測使用了基於超像素的方法搭配上低階特徵與啟發式的法則 來解決。而在過去幾年,卷積神經網絡(CNN)在電腦視覺上呈為主流,然而,因 為卷積神經網絡需要網格狀的輸入而超像素在形狀上基本上是不規則的,要將超像素與卷積神經網絡做結合是非常困難的。 在本作中,我們將基於超像素的方法與學習式演算法以兩種方式做結合,第一 種是基於支持向量機(SVM)的方式,此方法使用了基於超像素的特徵以及使用 深度合併模型(DMMSS)來進行超像素的合併,最後使用了支持向量機來做為 分類器。第二種方法我們提出了新的顯著性偵測網路叫做圖顯著網路(GSN), 我們使用了圖卷積網絡(GCN)做為我們主要的架構,並且搭配了跳躍知識網路 (JKNet)做為骨幹。 本作最主要的貢獻在於以兩種方式結合了學習性演算法以及基於超像素的特 徵,實驗上也顯示我們的結合性方法可以在顯著性偵測上達到非常好的表現。 | zh_TW |
dc.description.abstract | In computer vision, saliency detection simulates human perception and is useful for several image-processing applications, such as adaptive compression, object recognition, image retrieval, and object detection. In the past, saliency detection problem was solved by superpixel-based method cooperate with low-level features and heuristic rules. Recently, the Convolutional Neural Networks (CNN)-based methods have been thrived in computer vision area. However, it was difficult to integrate CNN with superpixel-based method since CNN required grid-like input while superpixel generally has irregular shape. In this work, we integrate the superpixel-based method with learning algorithm in two different ways. The first one is Support Vector Machine (SVM) Based method. We revisit superpixel-based feature with the help of Deep Merging Model for Superpixel Segmentation (DMMSS) on merging superpixel and combining the feature with the SVM classifier. For the second method, we introduced a novel saliency detection neural network model called the Graph Saliency Network (GSN), which use the Graph Convolutional Network(GCN) as main architecture and the Jumping Knowledge Network(JKNet) as our backbone. The main contribution of this work is that we combine learning algorithm with the superpixel-based features in two ways. Experiment has shown that our integration methods can achieve high performance for the saliency detection problem. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T07:08:04Z (GMT). No. of bitstreams: 1 U0001-1607202016203700.pdf: 23234930 bytes, checksum: 80bb5f2c9d8b4afb460ed811d383e82f (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 致謝 i 摘要 ii Abstract iii Table of Contents iv List of Tables v List of Figures vi 1 Introduction 1 2 Related Work 5 2.1 SaliencyinContext ... 5 2.2 Multi-ContextModel ... 6 2.3 DeepHierarchicalSaliencyNetwork ... 7 2.4 SaliencyAttentiveModel ... 8 2.5 Deep Spatial Contextual Long-Term Recurrent Convolutional Neural Net-work ... 9 2.6 Scene-SpecificConvolutionalNeuralNetwork ... 10 2.7 DNNModelAnalysis ... 11 2.8 3DCNN ... 11 2.9 Triplet-CNN ... 12 2.10Multi-ScaleNetwork ... 13 2.11 Background Subtraction Neural Network for Depth Video ... 14 2.12 Background Subtraction Conditional Generative Adversarial Network ... 15 3 Proposed Method 17 3.1 OverviewofProposedMethod ... 17 3.2 SVM-BasedSaliencyDetection ... 19 3.2.1 Deep Merging Model for Superpixel-Based Segmentation ... 19 3.2.2 ColorSpatialVariance ... 20 3.2.3 BoundaryConnectivity ... 23 3.2.4 ContextAware ... 24 3.2.5 ManifoldRanking ... 26 3.2.6 FeatureCombination ... 28 3.2.7 SupportVectorMachine ... 28 3.3 GraphSaliencyNetwork ... 30 3.3.1 GraphCreation ... 30 3.3.2 GraphConvolutional ... 31 3.3.3 GraphConvolutionalNeuralNetwork ... 34 3.3.4 DropEdge ... 35 3.3.5 JumpingKnowledgeNetwork ... 35 4 Experiment Result 36 4.1 Dataset ... 36 4.2 PerformanceComparison ... 36 5 Conclusion 42 Bibliography 43 | |
dc.language.iso | zh-TW | |
dc.title | 基於機器學習方法的顯著性偵測 | zh_TW |
dc.title | Machine Learning Techniques for Saliency Detection | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 王鵬華(Peng-Hua Wang),許文良(Wen-Liang Hsue),歐陽良昱(Liang Yu Ou Yang) | |
dc.subject.keyword | 顯著性偵測,超像素,支持向量機,圖捲積網路,跳躍知識網路, | zh_TW |
dc.subject.keyword | Saliency Detection,Superpixel,Support Vector Machine,Graph Convolutional Network,Jumping Knowledge Network, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU202001577 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-07-27 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1607202016203700.pdf 目前未授權公開取用 | 22.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。