Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57857
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor丁建均(Jian-Jiun Ding)
dc.contributor.authorPo-Hung Wuen
dc.contributor.author吳泊泓zh_TW
dc.date.accessioned2021-06-16T07:07:48Z-
dc.date.available2014-07-15
dc.date.copyright2014-07-15
dc.date.issued2013
dc.date.submitted2014-07-09
dc.identifier.citationA. Salient Region Detection
[1] T. Kadir and M. Brady, “Saliency, scale and image description,” Int. J. Comput. Vision, vol. 45, no. 2, pp. 83-105, 2001.
[2] U. Rutishauser, D. Walther, C. Koch, and P. Perona, “Is bottom-up attention useful for object recognition?” in Proc. CVPR, vol. 2, pp. 37-44, 2004.
[3] S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” ACM Trans. Graph., vol. 26, no. 3, art. 10, 2007.
[4] T. Chen, M. M. Cheng, P. Tan, A. Shamir, and S. M. Hu, “Sketch2photo: Internet image montage,” ACM Trans. Graph., vol. 28, no. 5, art. 124, 2009.
[5] Y. S. Wang, C. L. Tai, O. Sorkine, and T. Y. Lee, “Optimized scale-and-stretch for image resizing,” ACM Trans. Graph., vol. 27, no. 5, art. 118, 2008.
[6] H. Wu, Y. S. Wang, K. C. Feng, T. T. Wong, T. Y. Lee, and P. A. Heng, “Resizing by symmetry-summarization,” ACM Trans. Graph., vol. 29, no. 6, art. 159, 2008.
[7] R. Desimone and J. Duncan, “Neural machanism of selective visual attention,” Annu. Rev.Neurosci, vol. 18, no. 1, pp. 193-222,1995.
[8] S. K. Mannan, C. Kennard, and M. Husain, “The role of visual salience in directing eye movements in visual object agnosia,” Current Biology, vol. 19, no. 6, pp. 247-248, 2009.
[9] J. M. Wolfe and T. S. Horowitz, “What attributes guide the deployment of visual attention and how do they do it?” Nature Reviews Neuroscience, vol. 5, pp.495-501, 2004.
[10] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual attention for rapid scene analysis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 11, pp. 1254-1259, 1988.
[11] Y.-F. Ma and H. J. Zhang, “Contrast-based image attention analysis by using fuzzy growing,” in Proc. 11th Int. Conf. Multimedia, pp. 374–381, 2003.
[12] J. Harel, C. Koch, and P. Perona, “Graph-based visual saliency,” Advance in Neural Information Processing Systems, 19:545-552, 2006.
[13] X. Hou and L. Zang, “Saliency detection: A spectral residual approach,” in Proc. CVPR, pp. 1-8, 2007.
[14] R. Achanta, F. Estrada, P. Wils, and S. S‥usstrunk, “Salient region detection and segmentation,” Lecture Notes in Computer Science, vol. 5008, pp. 66–75, 2008.
[15] S. Goferman, Z. M. Lihi, and A. Tal, “Context-aware saliency detection,” in Proc. CVPR, pp. 2376-2383, 2010.
[16] R. Achanta, S. Hemami, F. Estrada, and S. Susstrunk, “Frequency-tuned salient region detection,” in Proc. CVPR, 2009, pp. 1597-1604.
[17] Y. Zhai and M. Shah, “Visual attention detection in video sequences using spatiotemporal cues,” in Proc. 14th Int. Conf. Multimedia, pp. 815–824, 2006.
[18] M. M. Cheng, G. X. Zhang, N. J. Mitra, X. Huang, and S. M. Hu, “Global contrast based salient region detection,” in Proc. CVPR, pp. 409-416, 2011.
[19] L. Xu, C. Lu, Y. Xu, and J. Jia, “Image smoothing via L0 gradient minimization,” ACM Trans. Graph., vol. 30, no. 5, 2011.
[20] M. Visani, C. Garcia, and C. Laurent, “Comparing robustness of two-dimensional PCA and eigenfaces for face recognition,” Lect. Notes in Comput. Sci., vol. 3212, pp. 717–724, 2004.
[21] J. J. Ding, C. J. Kuo, and W. C. Hong, “An efficient image segmentation technique by fast scanning and adaptive merging,” in Proc. Conf. Comput. Vision Graph. Image Process., Aug. 2009.
[22] T. Liu, Z. Yuan, J. Sun, J. Wang, N. Zheng, X. Tang, and H. Shum, “Learning to detect a salient object,” IEEE Trans. on Pattern Anal. Mach. Intell., vol. 33, no. 3, pp. 353-367, 2011.
[23] Z. Ren, Y. Hu, L. T. Chia, and D. Rajan, “Improved saliency detection based on superpixel clustering and saliency propagation,” in Proc. Int. Conf. Multimedia, pp. 1099-1102, 2010.
[24] L. Zhuang, K.. Tang, N. Yu, and Y. Qian, “Fast salient object detection based on segments,” in Proc. Int. Conf. Measuring Technology And Mechatronics Automation, vol. 1, pp. 469-472, 2009.
[25] Z. Han, Z. Liu, and Z. Zhang, “Salient object extraction based on region saliency ratio,” in Proc. IEEE Conf. Comput. Inf. Sci., pp. 611-615, 2009.
[26] S. Alpert, M. Galun and R. Basri, A. Brandt, “Image segmentation by probabilistic bottom-up aggregation and cue integration,” in Proc. CVPR, pp. 1-8, 2007.
[27] A. Borji, D. N. Sihite, and L. Itti, “Salient object detection: A benchmark,” in Proc. ECCV, pp. 414-429, 2012.
[28] V. Movahedi and J. H. Elder, “Design and perceptual validation of performance measures for salient object segmentation,” in 7th IEEE Computer Society Workshop on Perceptual Organization in Computer Vision, pp. 49-56, 2010.
[29] S. Avidan and A. Shamir, “Seam carving for content-aware image resizing,” ACM Trans. Graph., vol. 26, no. 10, 2007.
B. Image Registration
[30] B. Zitova and J. Flusser, “Image registration methods: a survey, Image and Vision Computing”, vol. 21, pp. 977-1000, 2003.
[31] J. Flusser and T. Suk, “A moment-based approach to registration of images with affine geometric distortion,” IEEE Transactions on Geoscience and Remote Sensing, vol. 32, pp. 382–387, 1994.
[32] M. Holm, “Towards automatic rectification of satellite images using feature based matching,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS, Espoo, Finland, pp. 2439–2442, 1991.
[33] Y.C. Hsieh, D.M. McKeown, and F.P. Perlant, “Performance evaluation of scene registration and stereo matching for cartographic feature extraction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, pp. 214–237, 1992.
[34] M. Sester and H. Hild, D. Fritsch, “Definition of ground control features for image registration using GIS data,” in Proceedings of the Symposium on Object Recognition and Scene Classification from Multispectral and Multisensor Pixels, pp. 7, 1998.
[35] M. Roux, “Automatic registration of SPOT images and digitized maps,” in Proceedings of the IEEE International Conference on Image Processing ICIP, Lausanne, Switzerland, pp. 625–628, 1996.
[36] P.A. Brivio, A.D. Ventura, A. Rampini, and R. Schettini, “Automatic selection of control points from shadow structures,” International Journal of Remote Sensing, vol. 13, pp. 1853–1860, 1992.
[37] S. Moss and E.R. Hancock, “Multiple line-template matching with EM algorithm,” Pattern Recognition Letters, vol. 18, pp. 1283–1292, 1997.
[38] V. Govindu, C. Shekhar, and R. Chellapa, “Using geometric properties for correspondence-less image alignment,” in Proceedings of the International Conference on Pattern Recognition ICPR, pp. 37–41, 1998.
[39] S.Z. Li, J. Kittler, and M. Petrou, “Matching and recognition of road networks from aerial images,” in Proceedings of the Second European Conference on Computer Vision ECCV, pp. 857–861, 1992.
[40] D. Shin, J.K. Pollard, and J.P. Muller, “Accurate geometric correction of ATSR images,” IEEE Transactions on Geoscience and Remote Sensing, vol. 35, pp. 997–1006, 1997.
[41] M. Ehlers, “Region-based matching for image registration in remote sensing databases,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS, pp. 2231–2234, 1991.
[42] L.M.G. Fonseca and M.H.M. Costa, “Automatic registration of satellite images,” in Proceedings of the Brazilian Symposium on Computer Graphic and Image Processing, Brazil, pp. 219–226., 1997.
[43] B.S. Manjunath, C. Shekhar, and R. Chellapa, “A new approach to image feature detection with applications,” Pattern Recognition, vol. 29, pp. 627–640, 1996.
[44] I. Barrodale, D. Skea, M. Berkley, R. Kuwahara, and R. Poeckert, “Warping digital images using thin plate splines,” Pattern Recognition, vol. 26, pp. 375–376, 1993.
[45] H. Hanaizumi and S. Fujimura, “An automated method for registration of satellite remote sensing images,” in Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS, pp. 1348–1350, 1993.
[46] E.D. Castro and C. Morandi, “Registration of translated and rotated images using finite Fourier transform,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 9 pp. 700–703, 1987.
[47] R.K. Sharma and M. Pavel, “Multisensor image registration,” in Proceedings of the Society for Information Display, pp. 951–954, 1997.
[48] A. Goshtasby and G.C. Stockman, “Point pattern matching using convex hull edges,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, pp. 631–637, 1985.
[49] G. Stockman, S. Kopstein and S. Benett, “Matching images to models for registration and object detection via clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, pp. 229–241, 1982.
[50] J. Flusser, “Object matching by means of matching likelihood coefficients,” Pattern Recognition Letters, vol. 16, pp. 893–900, 1995.
[51] C.Y. Wang, H. Sun, S. Yadas, and A. Rosenfeld, “Some experiments in relaxation image matching using corner features,” Pattern Recognition, vol. 16, pp. 167–182, 1983.
[52] R. Wiemker, K. Rohr, L. Binder, R. Sprengel, and H.S. Stiehl, “Application of elastic registration to imaginary from airborne scanners,” International Archives for Photogrammetry and Remote Sensing, pp. 949–954, 1996.
[53] A. Goshtasby, “Image registration by local approximation methods,” Image and Vision Computing, vol. 6, pp. 255–261, 1988.
[54] T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: Interpolation Methods in Medical Image Processing,” IEEE Transaction on Medical Imaging, vol. 18, pp. 1049-1075, 1999.
[55] J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient Feature Region: A New Method for Retinal Image Registration,” IEEE Transaction on Information Technology in Biomedicine, vol. 15, pp. 221-232, 2011.
[56] M. Weinmann, M. S. Hinz and B. Jutzi, “Fast and Automatic Image-based Registration of TLS data,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, pp. S62-S70, 2011.
[57] D. G. Lowe, “Distinctive image feature from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.
[58] H. Lin, P. Du, W. Zhao, L. Zhang and H. Sun, “Image Registration Based on Corner Detection and Affine Transformation,” International Congress on Image and Signal Processing, vol. 5, pp. 2184-2188, 2010.
[59] B. Avants, N. Tustison, G. Song, P. Cook, A. Klein, and J. Gee, “A Reproducible Evaluation of ANTs Similarity Metric Performance in Brain Image Registration,” NeuroImage, vol. 54, pp. 2033-2044, 2011.
[60] G. Gerganov, A. Papucharov, I. Kawrakow and K. Mitev, “Portal Image Registration Using the Phase Correlation Method,” IEEE Conference on Nuclear Science Symposium and Medical Imaging, pp. 1-3, 2013.
[61] A. Dame and E. Marchand, “Second-Order Optimization of Mutual Information for Real-Time Image Registration,” IEEE Transaction on Image Processing, vol. 21, pp. 4190-4203, 2012.
[62] J. Beis and D. G. Lowe, “Shape indexing using approximate nearest-neighbor search in high-dimension spaces,” in Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1000-1006, 1997.
[63] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge University, 2004.
C. Banknote Reconstruction
[64] L. Zhu, Z. Zhou, J. Zhang, and D. Hu, “A partial curve matching for automatic reassembly of 2D fragments,” in Proc. ICIC, pp. 645-650, 2006.
[65] M. S. Sagiroglu, and A. Ercil, “A texture based matching approach for automated assembly of puzzle,” in Proc. ICPR, vol. 3, pp. 1036-1041, 2006.
[66] M. Makridis, and N. Papamarkos, “A new technique for solving puzzles,” IEEE Trans. Syst., Man, Cybern., Syst. B. Cybern., vol. 40, pp. 789–797, 2010.
[67] H. Freeman and L. Garder, “Apictorial jigsaw puzzles: the computer solution of a problem in pattern recognition,” IEEE TEC, vol. 13, pp. 118–127, 1964.
[68] S. Cao, H. Liu, and S. Yan, “Automated assembly of shredded pieces from multiple photos,” in Proc. ICME, pp. 358-363, July 2010.
[69] T. S. Cho, S. Avidan, and W. T. Freeman, “A probabilistic image jigsaw puzzle solver,” in Proc. CVPR, pp. 183-190, 2010.
[70] W. Kong, and B. Kimia, “On solving 2D and 3D puzzles using curve matching,” in Proc. CVPR, vol. 2, pp. 583-590, 2001.
[71] J. McBride, and B. Kimia, “Archaeological fragment reconstruction using curve-matching,” in Proc. CVPRW, vol. 1, 2003.
[72] G. Papaioannou, E. A. Karabassi, and T. Theoharis, “Virtual archaeologist: Assembling the past,” IEEE Computer Graphics and Applications, vol. 21, no.2, pp. 53-59, 2001.
[73] B. Kimia and H. C. Aras, “HINDSITE: A user-interactive framework for fragment assembly,” IEEE Computer Society Conference on CVPRW, pp. 62-69. 2010.
[74] M. A. Fischler, and R. C. Bolles, “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography,” Communication of the ACM, 1981.
[75] A. Bemporad, and D. Mignone, A Matlab function for solving Mixed Integer Quadratic Programs, May 2001.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57857-
dc.description.abstractIn my dissertation, there are two main applications of computer vision. The first one is salient region detection improved by PCA and boundary information, and the second one is banknote reconstruction from fragments by image registration and convex quadratic programming.
Salient region detection is useful for several image-processing applications, such as adaptive compression, object recognition, image retrieval, filter design, and image retargeting. In this dissertation, we propose a novel method to determine the salient regions in images. The L0 smoothing filter and a Principal Component Analysis (PCA) play important roles in our framework. The L0 filter is greatly helpful in characterizing fundamental image constituents, i.e., salient edges, and for simultaneously diminishing insignificant details. Therefore, we can derive more accurate boundary information for background merging and boundary scoring. A PCA can reduce the computational complexity, as well as attenuate noises and translation errors. A local-global contrast is then used to calculate the distinctiveness. Finally, we take advantage of image segmentation to achieve full-resolution saliency maps. Our proposed method is compared with other state-of-the-art saliency detection methods, and is shown to yield higher precision-recall rates and F-measures.
Due to a variety of accidents, banknotes may be broken into several fragments. These fragments are usually stained, burned, partially lost, and twisted, which makes banknote reconstruction a hard problem. Since the fragments are always not intact, the traditional edge and texture based fragment assembling methods cannot be applied here. In this dissertation, we develop a framework for banknote reconstruction using registration and optimization. We applied the image registration using the SIFT and RANSAC. Moreover, convex quadratic optimization based on maximizing the reconstructed area and avoiding overlapping is adopted. Simulations are given to demonstrate the effectiveness of our framework.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:07:48Z (GMT). No. of bitstreams: 1
ntu-102-F98942124-1.pdf: 3056941 bytes, checksum: 5b7fb407b5036ab8c68379b84b8482aa (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Main Contribution 1
1.3 Organization 2
Chapter 2 Salient Region Detection 3
2.1 Introduction and Related Works 3
2.2 Background 7
2.3 Framework 11
2.4 Approach 12
2.5 Simulations 22
2.6 Conclusion 35
Chapter 3 Survey of Image Registration 36
3.1 Image Registration Methodology 36
3.2 Feature Detection 39
3.3 Feature Detection 41
3.4 Transform Model Estimation 47
3.5 Image Transform 50
3.6 Evaluation of Image Registration Accuracy 51
Chapter 4 Introduction to Scale-Invariant-Feature Transform 53
4.1 Scale-Space Extrema Detection 53
4.2 Accurate Keypoint Localization 55
4.3 Orientation Assignment 57
4.4 Local Image Descriptor 58
4.5 Keypoint Matching 59
Chapter 5 Brief Introduction to Convex Quadratic Program 61
5.1 Optimization Problems 61
5.2 Convex Optimization Problems 62
5.3 Quadratic Optimization Problems 64
Chapter 6 Banknote Reconstruction 66
6.1 Introduction 66
6.2 Background 70
6.3 Framework 74
6.4 Proposed Refinements of Image Registration 76
6.5 Proposed Reconstruction Algorithm 80
6.6 Simulations 83
6.7 Conclusion 89
Chapter 7 Conclusion and Future Work 90
REFERENCE 91
dc.language.isoen
dc.subject電腦視覺zh_TW
dc.subject影像套合zh_TW
dc.subject顯著區域偵測zh_TW
dc.subject最佳化zh_TW
dc.subjectRANSACen
dc.subjectcomputer visionen
dc.subjectsalient region detectionen
dc.subjectimage registrationen
dc.subjectconvex quadratic optimizationen
dc.subjectSIFTen
dc.title顯著區域偵測及影像套合之先進影像分析技術及應用zh_TW
dc.titleAdvanced Image Analysis Techniques and Applications of Salient Region Detection and Registrationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee許新添(Hsin-Teng Hsu),林惠勇(Huei-Yung Lin),余執彰(Chih-Chang Yu),張榮吉(Rong-Chi Chang)
dc.subject.keyword電腦視覺,影像套合,顯著區域偵測,最佳化,zh_TW
dc.subject.keywordcomputer vision,salient region detection,image registration,convex quadratic optimization,SIFT,RANSAC,en
dc.relation.page99
dc.rights.note有償授權
dc.date.accepted2014-07-09
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
2.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved