Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57851
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰(Huan-Jang Keh)
dc.contributor.authorGuan-Yu Chenen
dc.contributor.author陳冠宇zh_TW
dc.date.accessioned2021-06-16T07:07:26Z-
dc.date.available2014-07-15
dc.date.copyright2014-07-15
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citation(1) Burgreen, D.; Nakache, F. R. Electrokinetic Flow in Ultrafine Capillary Slits. J. Phys. Chem. 1964, 68, 1084-1091.
(2) Rice, C. L.; Whitehead, R. Electrokinetic Flow in a Narrow Cylindrical Capillary. J. Phys. Chem. 1965, 69, 4017-4024.
(3) Keh, H. J.; Liu, Y. C. Electrokinetic Flow in a Circular Capillary with a Surface Charge Layer. J. Colloid Interface Sci. 1995, 172, 222-229.
(4) Yang, C.; Li, D. Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels. J. Colloid Interface Sci. 1997, 194, 95-107.
(5) Szymczyk, A.; Aoubiza, B.; Fievet, P.; Pagetti, J. Electrokinetic Phenomena in Homogeneous Cylindrical Pores. J. Colloid Interface Sci. 1999, 216, 285-296.
(6) Tsao, H. K. Electroosmotic Flow through an Annulus. J. Colloid Interface Sci. 2000, 225 247-250.
(7) Keh, H. J.; Ding, J. M. Electrokinetic Flow in a Capillary with a Charge-Regulating Surface Polymer Layer. J. Colloid Interface Sci. 2003, 263, 645-660.
(8) Berli, C. L. A.; Olivares, M. L. Electrokinetic Flow of Non-Newtonian Fluids in Microchannels. J. Colloid Interface Sci. 2008, 320, 582-589.
(9) Chang, C. C.; Wang, C.-Y. Electro-osmotic Flow in a Sector Microchannel. Phys. Fluids 2009, 21, 042002/1-042002/7.
(10) Hsu, L. Y.; Keh, H. J. Diffusioosmosis of Electrolyte Solutions around a Circular Cylinder at Arbitrary Zeta Potential and Double-Layer Thickness. Ind. Eng. Chem. Res. 2009, 48, 2443-2450.
(11) Teorell, T. Excitability Phenomena in Artificial Membranes. Biophys. J. 1962, 2, 27-52.
(12) Barragan, V. M.; Bauza, C. R. Electroosmosis through a Cation-Exchange Membrane: Effect of an AC Perturbation on the Electroosmotic Flow. J. Colloid Interface Sci. 2000, 230, 359-366.
(13) Oddy, M. H.; Santiago, J. G.; Mikkelsen, J. C. Electrokinetic Instability Micromixing. Anal. Chem. 2001, 73, 5822-5832.
(14) Studeer, V.; Pepin, A.; Chen, Y.; Ajdari, A. Fabrication of Microfluidic Devices for AC Electrokinetic Fluid Pumping. Microelectron. Eng. 2002, 61, 915-920.
(15) Hanna, W. T.; Osterle, J. F. Transient Electro-osmosis in Capillary Tubes. J. Chem. Phys. 1968, 49, 4062-4068.
(16) Ivory, C. F. Transient Electroosmosis: the Momentum Transfer Coefficient. J. Colloid Interface Sci. 1983, 96, 296-298.
(17) Keh, H. J.; Tseng, H. C. Transient Electrokinetic Flow in Fine Capillaries. J. Colloid Interface Sci. 2001, 242, 450-459.
(18) Kang, Y.; Yang, C.; Huang, X. Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary. Int. J. Eng. Sci. 2002, 40, 2203-2221.
(19) Chang, C. C.; Wang, C. Y. Starting Electroosmotic Flow in an Annulus and in a Rectangular Channel. Electrophoresis 2008, 29, 2970-2979.
(20) Chakraborty, S.; Ray, S. Mass Flow-Rate Control through Time Periodic Electro-osmotic Flows in Circular Microchannels. Phys. Fluids 2008, 20, 083602/1-083602/11.
(21) Jian, Y.; Yang, L.; Liu, Q. Time Periodic Electro-osmotic Flows through a Microannulus. Phys. Fluids 2010, 22, 042001/1-042001/9.
(22) Ohshima, H. Electroosmotic Velocity in Fibrous Porous Media. J. Colloid Interface Sci. 1999, 210, 397-399.
(23) Ahualli, S.; Jimenez, M. L.; Carrique, F.; Delgado, A. V. AC Electrokinetics of Concentrated Suspensions of Soft Particles. Langmuir 2009, 25, 1986-1997.
(24) Ding, J. M.; Keh, H. J. The Electrophoretic Mobility and Electric Conductivity of a Concentrated Suspension of Colloidal Spheres with Arbitrary Double-Layer Thickness. J. Colloid Interface Sci. 2001, 236, 180-193.
(25) Carrique, F.; Cuquejo, J.; Arroyo, F. J.; Jimenez, M. L.; Delgado, A. V. Influence of Cell-Model Boundary Conditions on the Conductivity and Electrophoretic Mobility of Concentrated Suspensions. Adv. Colloid Interface Sci. 2005, 118, 43-50.
(26) Keh, H. J.; Liu, C. P. Electric Conductivity and Electrophoretic Mobility in Suspensions of Charged Porous Spheres. J. Phys. Chem. C 2010, 114, 22044-22054.
(27) Wu, Y. Y.; Keh, H. J. Electrokinetic Flow and Electric Current in a Fibrous Porous Medium. J. Phys. Chem. B 2012, 116, 3578-3586.
(28) Ohshima, H. Electrical Conductivity of a Concentrated Suspension of Spherical Colloidal Particles. J. Colloid Interface Sci. 1999, 212, 443-448.
(29) Hsu. W. T.; Keh, H. J. Electric Conductivity in a Fibrous Porous Medium with Thin but Polarized Double Layers. Colloid Polym. Sci. 2004, 282, 985-992.
(30) Wei, Y. K.; Keh, H. J. Theory of Electrokinetic Phenomena in Fibrous Porous Media Caused by Gradients of Electrolyte Concentration. Colloids Surfaces A 2003, 222, 301-310.
(31) Keh, H. J.; Hsu, L. Y. Diffusioosmotic Flow of Electrolyte Solutions in Fibrous Porous Media at Arbitrary Zeta Potential and Double-Layer Thickness. Microfluid. Nanofluid. 2009, 7, 773-781.
(32) Wei, Y. K.; Keh, H. J. Diffusiophoresis in a Suspension of Spherical Particles with Arbitrary Double-Layer Thickness. J. Colloid Interface Sci. 2002, 248, 76-87.
(33) Keh, H. J.; Huang, Y. C. Transient Electrophoresis of Dielectric Spheres. J. Colloid Interface Sci. 2005, 291, 282-291.
(34) Huang, Y. C.; Keh, H. J. Transient Electrophoresis of Spherical Particles at Loa Potential and Arbitrary Double-Layer Thickness. Langmuir 2005, 21, 11659-11665.
(35) Zukoski, C. F.; Saville, D. A. Electrokinetic Properties of Particles in Concentrated Suspensions. J. Colloid Interface Sci. 1987, 115, 422-436.
(36) Lobaskin, V.; Dunweg, B.; Medebach, M.; Palberg, T.; Holm, C. Electrophoresis of Colloidal Dispersions in the Low-Salt Regime. Phys. Rev. Lett. 2007, 98, 176105/1-176105/4.
(37) Deggelmann, M.; Graf, C.; Hagenbuchle, M.; Hoss, U.; Johner, C.; Kramer, H.; Martin, C.; Weber, R. Electrokinetic Properties of Aqueous Suspensions of Interacting Rodlike Tobacco Mosaic Viruses in the Gas- and Liquidlike Phase. J. Phys. Chem. 1994, 98, 364-368.
(38) Hoss, U.; Batzill, S.; Deggelmann, M.; Graf, C.; Hagenbuchle, M.; Johner, C.; Kramer, H.; Martin, C.; Overbeck, E.; Weber, R. Electrokinetic Properties of Aqueous Suspensions of Rodlike fd Virus Particles in the Gas- and Liquidlike Phase. Macromolecules 1994, 27, 3429-3431.
(39) Berryman, J. G. Random Close Packing of Hard Spheres and Disks. Phys. Rev. A 1983, 27, 1053-1061.
(40) Erdelyi, A. Higher Transcendental Functions, Vol. I, pp. 206; McGraw-Hill: New York, 1953.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57851-
dc.description.abstract本論文使用單元小室模型,進行分析研究電解質溶液在由一群相互平行且表面帶電的圓柱體所組成的均勻纖維狀多孔性介質中的暫態電動力流動現象,所施加的均勻電場與壓力梯度,其方向皆平行於這些圓柱體的軸線。藉由求解Poisson-Boltzmann方程式和包含靜電作用力修正過後的Navier-Stokes方程式,吾人可以求得在任意電雙層厚度及表面電位時流體相的電位分佈和暫態流速分佈。由暫態流速的結果可以獲得和時間以及纖維狀介質之孔隙度有關的流體電滲透速度和有效導電度的表示式。從結果得知,圓柱體半徑與電雙層厚度比值、孔隙度、時間以及表面電位大小等相關參數對初期的暫態電動力流動現象有顯著且有趣的影響。而對孔隙度較小的纖維狀介質而言,流體速度以及電流密度達到一定程度接近穩定狀態時所需要的時間較短。zh_TW
dc.description.abstractThe transient response of ionic solutions in the porous medium constructed by a homogeneous assemblage of parallel charged circular cylinders to the step application of an electric field and a pressure gradient in the axial direction is analyzed through the use of a unit cell model. By solving the Poisson-Boltzmann equation and modified Navier-Stokes equation applicable to the system, the electric potential distribution and time-evolving velocity profile in the fluid phase are determined for arbitrary electric double layer thickness and zeta potential associated with the dielectric cylinders. Results for the flow rate, electroosmotic velocity, and effective electric conductivity of the fluid are obtained as functions of the elapsed time and the porosity of the fibrous medium. The effects of the relevant parameters on the transient starting electrokinetic flow in the fiber array are significant and interesting. For a fibrous medium with smaller porosity, a much shorter elapsed time is needed for the fluid velocity and electric current density to be within a certain percentage of their steady-state values.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:07:26Z (GMT). No. of bitstreams: 1
ntu-103-R01524079-1.pdf: 636572 bytes, checksum: bdc77d5c698d84ff9a8ef0b9b1c2cf2e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbstract ...........................................I
摘要 ................................................II
Lists of Figures ...................................V
Chapter 1 Introduction .............................1
Chapter 2 Electrostatic Potential ..................4
2.1 Governing Equation and Boundary Conditions ...4
2.2 Numerical and Approximate Solutions ..........5
Chapter 3 Fluid Velocity ...........................8
3.1 Analysis .....................................8
3.2 Electroosmosis ...............................12
3.3 Results and Discussion .......................13
Chapter 4 Electric Current Density ................25
4.1 Analysis .....................................25
4.2 Results and Discussion .......................27
Chapter 5 Concluding Remarks .......................32
Lists of Symbols ...................................34
References .........................................37
Biographical Sketch ................................43
dc.language.isoen
dc.subject有效導電度zh_TW
dc.subject流動電位zh_TW
dc.subject電滲透zh_TW
dc.subject小室模型zh_TW
dc.subject圓柱體zh_TW
dc.subjectCircular cylinderen
dc.subjectStreaming potentialen
dc.subjectEffective electric conductivityen
dc.subjectUnit cell modelen
dc.subjectElectroosmosisen
dc.title纖維狀多孔性介質之暫態電動力流動zh_TW
dc.titleTransient Electrokinetic Flow in a Fibrous Porous Mediumen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張有義,詹正雄
dc.subject.keyword電滲透,流動電位,有效導電度,圓柱體,小室模型,zh_TW
dc.subject.keywordElectroosmosis,Streaming potential,Effective electric conductivity,Circular cylinder,Unit cell model,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2014-07-09
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
621.65 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved