請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57844完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 葛煥彰(Huan-Jang Keh) | |
| dc.contributor.author | Hung-Hsien Chen | en |
| dc.contributor.author | 陳弘憲 | zh_TW |
| dc.date.accessioned | 2021-06-16T07:07:00Z | - |
| dc.date.available | 2014-07-15 | |
| dc.date.copyright | 2014-07-15 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-09 | |
| dc.identifier.citation | Balsara, N. P., and Subramanian, R. S. (1987). The Influence of Buoyancy on Thermophoretic Deposition of Aerosol Particles in a Horizontal Tube, J. Colloid Interface Sci. 118:3-14.
Brock, J. R. (1962).On the Theory of Thermal Forces Acting on Aerosol Particles, J. Colloid Sci. 17:768-780. Chang, Y. C., and Keh, H. J. (2010a).Thermophoretic Motion of Slightly Deformed Aerosol Spheres, J. Aerosol Sci. 41:180-197. Chang, Y. C., and Keh, H. J. (2010b).Thermophoresis of Axially and Fore-and-Aft Symmetric Aerosol Particles, Phys. Fluids 22:113305-1-17. Chang, Y. C., and Keh, H. J. (2012).Effects of Thermal Stress Slip on Thermophoresis and Photophoresis, J. Aerosol Sci. 50:1-10. Cheung, C. K. W., Fletcher, D. F., Barton, G. W., and McNamara, P. (2009). Simulation of Particle Transport and Deposition in the Modified Chemical Vapor Deposition Process, J. Non-Crystalline Solids 355:327-334. Dang, H., and Swihart, M. T. (2009). Computational Modeling of Silicon Nanoparticle Synthesis: II. A Two-Dimensional Bivariate Model for Silicon Nanoparticle Synthesis in a Laser-Driven Reactor Including Finite-Rate Coalescence, Aerosol Sci. Technol. 43:554-569. Das, K. (2012). Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties, Int. J. Heat Mass Transfer 55:7166–7174. Hsieh, T. H., and Keh, H. J. (2012).Thermophoresis of an Aerosol Sphere with Chemical Reactions, Aerosol Sci. Technol. 46:361-368. Keh, H. J., and Chen, S. H. (1995).Particle Interactions in Thermophoresis, Chem. Eng. Sci. 50:3395-3407. Keh, H. J., and Ou, C. L. (2004).Thermophoresis of Aerosol Spheroids, Aerosol Sci. Technol. 38:675-684. Keh, H. J., and Tu, H. J.(2001).Thermophoresis and photophoresis of cylindrical particles,Colloids Surf. A 176: 213-223. Koziel, J. A., Haddadi, S. H., Koch, W., and Pawliszyn, J. (2009). Sampling and Analysis of Nanoparticles with Cold Fibre SPME Device, J. Sep. Sci. 32:1975-1980. Li, W., and Davis, E. J. (1995). Measurement of the Thermophoretic Force by Electrodynamic Levitation: Microspheres in Air, J. Aerosol Sci. 26:1063-1083. Li, W. K., Soong, C. Y., Liu, C. H., and Tzeng, P. Y. (2010).Thermophoresis of a micro-particle in gaseous media with effect of thermal stress slip,Aerosol Sci. Technol. 44:1077-1082. Messerer, A., Niessner, R., and Poschl, U. (2004). Miniature Pipe Bundle Heat Exchanger for Thermophoretic Deposition of Ultrafine Soot Aerosol Particles at High Flow Velocities, Aerosol Sci. Technol. 38:456-466. MohdAzahari, B.R., Mori,M., Suzuki,M., and Masuda, W. (2012). Effects of Gas Species on Pressure Dependence of Thermophoretic Velocity,J. Aerosol Sci.54:77-87. Nguyen, Q. T., Kidder, J. N., and Ehrman, S. H. (2002). Hybrid Gas-to-Particle Conversion and Chemical Vapor Deposition for the Production of Porous Alumina Films, Thin Solid Films 410:42-52. Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980).Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech. 101:737-758. Tan, S. M., Ng, H. K., and Gan, S. (2013). CFD modelling of soot entrainment via thermophoretic deposition and crevice flow in a diesel engine, J. AerosolSci.66:83–95. Walsh, J. K., Weimer, A. W., and Hrenya, C. M. (2006).Thermophoretic Deposition of Aerosol Particles in Laminar Tube Flow with Mixed Convection, J. Aerosol Sci. 37:715-734. Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry, Pergamon Press, Oxford. Young, J. B. (2011). Thermophoresis of a Spherical Particle: Reassessment, Clarification, and New Analysis, Aerosol Sci. Technol. 45:927-948. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57844 | - |
| dc.description.abstract | 本論文探討一有化學反應之圓柱粒子,於一存在外加垂直於其軸向之均勻溫度梯度的氣體中所進行之熱泳運動,在Knudsen數較小的滑移流動情況下之氣固界面,可以用溫度跳躍、熱滑移、摩擦滑移和熱應力滑移的效應來描述。吾人求解適當的熱傳導/熱生成和流體運動主導方程式,得到解析型式的圓柱粒子熱泳速度。熱泳速度為熱應力滑移係數的線性函數,熱應力滑移的影響會隨著Knudsen數的增大而增強。當粒子內化學反應之組成因數不是位置的函數時,熱泳速度會因為吸熱反應而減少,因為放熱反應而增加。當化學反應組成因數是一個位置函數時,熱泳速度的方向有可能偏離於外加溫度梯度的方向。在固定的系統性質下,由於圓柱粒子的比表面積比球形粒子來的小,化學反應對於圓柱粒子之熱泳速度的影響比對於球形粒子來得明顯。 | zh_TW |
| dc.description.abstract | The thermophoresis of a circular cylindrical particle bearing a chemical reaction in agas prescribed with a uniform temperature gradient in the direction perpendicular to its axisisanalyzed. The Knudsen number is assumed to be moderately small so that the fluid motion is in the slip-flow regime with effects of temperature jump, thermal creep, frictional slip, and thermal stress slip at the particle-gas interface. The appropriategoverning equations of heat conduction/generation and fluid motionare solved analytically and the thermophoretic velocity of the particle is obtained in closed forms. The thermophoretic velocity is a linear function of the thermal stress slip coefficient whose effect increases with an increase in the Knudsen number.When the composition-dependent factor of the chemical reaction within the particle does not depend on position, the thermophoretic velocity is diminished as the reaction is endothermic and augmented as the reaction is exothermic.When this factor is a function ofposition, the particle velocity can deflect from the direction of the imposed temperature gradient. For specified system characteristics,the effect of the chemical reaction on the thermophoreticvelocity of a circular cylindrical particle is significantly greater than thatof a spherical particle due to its smaller specific surface area. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T07:07:00Z (GMT). No. of bitstreams: 1 ntu-103-R01524060-1.pdf: 1553435 bytes, checksum: 3d44b7fac786b17d86d52e89fc52977c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Abstract I
摘要 II List of Figures IV Chapter 1 Introduction 1 Chapter 2 Analysis 4 2.1 Temperature Field 4 2.2 Fluid Flow Field 9 2.3 Particle Velocity 10 Chapter 3 Results and Discussion 13 3.1 Case with Constant Heat Generation Parameter 13 3.2 Case with Very Small 16 Chapter 4 Concluding Remarks 30 Lists of Symbols 32 References 35 | |
| dc.language.iso | en | |
| dc.subject | 熱泳 | zh_TW |
| dc.subject | 圓柱氣膠粒子 | zh_TW |
| dc.subject | 化學反應 | zh_TW |
| dc.subject | 滑移流動 | zh_TW |
| dc.subject | 熱應力滑移 | zh_TW |
| dc.subject | slip-flow regime | en |
| dc.subject | aerosol cylinder | en |
| dc.subject | Thermophoresis | en |
| dc.subject | chemical reaction | en |
| dc.subject | thermal stress slip | en |
| dc.title | 具化學反應圓柱粒子之熱泳運動 | zh_TW |
| dc.title | Thermophoresis of an Aerosol Cylinder with Chemical Reactions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張有義,詹正雄 | |
| dc.subject.keyword | 熱泳,圓柱氣膠粒子,化學反應,滑移流動,熱應力滑移, | zh_TW |
| dc.subject.keyword | Thermophoresis,aerosol cylinder,chemical reaction,slip-flow regime,thermal stress slip, | en |
| dc.relation.page | 37 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-10 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.52 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
