Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57844
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葛煥彰(Huan-Jang Keh)
dc.contributor.authorHung-Hsien Chenen
dc.contributor.author陳弘憲zh_TW
dc.date.accessioned2021-06-16T07:07:00Z-
dc.date.available2014-07-15
dc.date.copyright2014-07-15
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citationBalsara, N. P., and Subramanian, R. S. (1987). The Influence of Buoyancy on Thermophoretic Deposition of Aerosol Particles in a Horizontal Tube, J. Colloid Interface Sci. 118:3-14.
Brock, J. R. (1962).On the Theory of Thermal Forces Acting on Aerosol Particles, J. Colloid Sci. 17:768-780.
Chang, Y. C., and Keh, H. J. (2010a).Thermophoretic Motion of Slightly Deformed Aerosol Spheres, J. Aerosol Sci. 41:180-197.
Chang, Y. C., and Keh, H. J. (2010b).Thermophoresis of Axially and Fore-and-Aft Symmetric Aerosol Particles, Phys. Fluids 22:113305-1-17.
Chang, Y. C., and Keh, H. J. (2012).Effects of Thermal Stress Slip on Thermophoresis and Photophoresis, J. Aerosol Sci. 50:1-10.
Cheung, C. K. W., Fletcher, D. F., Barton, G. W., and McNamara, P. (2009). Simulation of Particle Transport and Deposition in the Modified Chemical Vapor Deposition Process, J. Non-Crystalline Solids 355:327-334.
Dang, H., and Swihart, M. T. (2009). Computational Modeling of Silicon Nanoparticle Synthesis: II. A Two-Dimensional Bivariate Model for Silicon Nanoparticle Synthesis in a Laser-Driven Reactor Including Finite-Rate Coalescence, Aerosol Sci. Technol. 43:554-569.
Das, K. (2012). Influence of thermophoresis and chemical reaction on MHD micropolar fluid flow with variable fluid properties, Int. J. Heat Mass Transfer 55:7166–7174.
Hsieh, T. H., and Keh, H. J. (2012).Thermophoresis of an Aerosol Sphere with Chemical Reactions, Aerosol Sci. Technol. 46:361-368.
Keh, H. J., and Chen, S. H. (1995).Particle Interactions in Thermophoresis, Chem. Eng. Sci. 50:3395-3407.
Keh, H. J., and Ou, C. L. (2004).Thermophoresis of Aerosol Spheroids, Aerosol Sci. Technol. 38:675-684.
Keh, H. J., and Tu, H. J.(2001).Thermophoresis and photophoresis of cylindrical particles,Colloids Surf. A 176: 213-223.
Koziel, J. A., Haddadi, S. H., Koch, W., and Pawliszyn, J. (2009). Sampling and Analysis of Nanoparticles with Cold Fibre SPME Device, J. Sep. Sci. 32:1975-1980.
Li, W., and Davis, E. J. (1995). Measurement of the Thermophoretic Force by Electrodynamic Levitation: Microspheres in Air, J. Aerosol Sci. 26:1063-1083.
Li, W. K., Soong, C. Y., Liu, C. H., and Tzeng, P. Y. (2010).Thermophoresis of a micro-particle in gaseous media with effect of thermal stress slip,Aerosol Sci. Technol. 44:1077-1082.
Messerer, A., Niessner, R., and Poschl, U. (2004). Miniature Pipe Bundle Heat Exchanger for Thermophoretic Deposition of Ultrafine Soot Aerosol Particles at High Flow Velocities, Aerosol Sci. Technol. 38:456-466.
MohdAzahari, B.R., Mori,M., Suzuki,M., and Masuda, W. (2012). Effects of Gas Species on Pressure Dependence of Thermophoretic Velocity,J. Aerosol Sci.54:77-87.
Nguyen, Q. T., Kidder, J. N., and Ehrman, S. H. (2002). Hybrid Gas-to-Particle Conversion and Chemical Vapor Deposition for the Production of Porous Alumina Films, Thin Solid Films 410:42-52.
Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, D. R. (1980).Thermophoresis of Particles in a Heated Boundary Layer, J. Fluid Mech. 101:737-758.
Tan, S. M., Ng, H. K., and Gan, S. (2013). CFD modelling of soot entrainment via thermophoretic deposition and crevice flow in a diesel engine, J. AerosolSci.66:83–95.
Walsh, J. K., Weimer, A. W., and Hrenya, C. M. (2006).Thermophoretic Deposition of Aerosol Particles in Laminar Tube Flow with Mixed Convection, J. Aerosol Sci. 37:715-734.
Williams, M. M. R., and Loyalka, S. K. (1991). Aerosol Science: Theory and Practice, with Special Applications to the Nuclear Industry, Pergamon Press, Oxford.
Young, J. B. (2011). Thermophoresis of a Spherical Particle: Reassessment, Clarification, and New Analysis, Aerosol Sci. Technol. 45:927-948.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57844-
dc.description.abstract本論文探討一有化學反應之圓柱粒子,於一存在外加垂直於其軸向之均勻溫度梯度的氣體中所進行之熱泳運動,在Knudsen數較小的滑移流動情況下之氣固界面,可以用溫度跳躍、熱滑移、摩擦滑移和熱應力滑移的效應來描述。吾人求解適當的熱傳導/熱生成和流體運動主導方程式,得到解析型式的圓柱粒子熱泳速度。熱泳速度為熱應力滑移係數的線性函數,熱應力滑移的影響會隨著Knudsen數的增大而增強。當粒子內化學反應之組成因數不是位置的函數時,熱泳速度會因為吸熱反應而減少,因為放熱反應而增加。當化學反應組成因數是一個位置函數時,熱泳速度的方向有可能偏離於外加溫度梯度的方向。在固定的系統性質下,由於圓柱粒子的比表面積比球形粒子來的小,化學反應對於圓柱粒子之熱泳速度的影響比對於球形粒子來得明顯。zh_TW
dc.description.abstractThe thermophoresis of a circular cylindrical particle bearing a chemical reaction in agas prescribed with a uniform temperature gradient in the direction perpendicular to its axisisanalyzed. The Knudsen number is assumed to be moderately small so that the fluid motion is in the slip-flow regime with effects of temperature jump, thermal creep, frictional slip, and thermal stress slip at the particle-gas interface. The appropriategoverning equations of heat conduction/generation and fluid motionare solved analytically and the thermophoretic velocity of the particle is obtained in closed forms. The thermophoretic velocity is a linear function of the thermal stress slip coefficient whose effect increases with an increase in the Knudsen number.When the composition-dependent factor of the chemical reaction within the particle does not depend on position, the thermophoretic velocity is diminished as the reaction is endothermic and augmented as the reaction is exothermic.When this factor is a function ofposition, the particle velocity can deflect from the direction of the imposed temperature gradient. For specified system characteristics,the effect of the chemical reaction on the thermophoreticvelocity of a circular cylindrical particle is significantly greater than thatof a spherical particle due to its smaller specific surface area.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:07:00Z (GMT). No. of bitstreams: 1
ntu-103-R01524060-1.pdf: 1553435 bytes, checksum: 3d44b7fac786b17d86d52e89fc52977c (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbstract I
摘要 II
List of Figures IV
Chapter 1 Introduction 1
Chapter 2 Analysis 4
2.1 Temperature Field 4
2.2 Fluid Flow Field 9
2.3 Particle Velocity 10
Chapter 3 Results and Discussion 13
3.1 Case with Constant Heat Generation Parameter 13
3.2 Case with Very Small 16
Chapter 4 Concluding Remarks 30
Lists of Symbols 32
References 35
dc.language.isoen
dc.subject熱泳zh_TW
dc.subject圓柱氣膠粒子zh_TW
dc.subject化學反應zh_TW
dc.subject滑移流動zh_TW
dc.subject熱應力滑移zh_TW
dc.subjectslip-flow regimeen
dc.subjectaerosol cylinderen
dc.subjectThermophoresisen
dc.subjectchemical reactionen
dc.subjectthermal stress slipen
dc.title具化學反應圓柱粒子之熱泳運動zh_TW
dc.titleThermophoresis of an Aerosol Cylinder with Chemical Reactionsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張有義,詹正雄
dc.subject.keyword熱泳,圓柱氣膠粒子,化學反應,滑移流動,熱應力滑移,zh_TW
dc.subject.keywordThermophoresis,aerosol cylinder,chemical reaction,slip-flow regime,thermal stress slip,en
dc.relation.page37
dc.rights.note有償授權
dc.date.accepted2014-07-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.52 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved