Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57838
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳肇欣(Chao-Hsin Wu)
dc.contributor.authorChien-Ting Tungen
dc.contributor.author董建廷zh_TW
dc.date.accessioned2021-06-16T07:06:39Z-
dc.date.available2025-07-20
dc.date.copyright2020-07-27
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation[1] I. C. Systems. 'Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper.'
[2] M. Feng, N. Holonyak, and R. Chan, “Quantum-well-base heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 84, no. 11, pp. 1952-1954, 2004/03/15, 2004.
[3] G. Walter, N. Holonyak, M. Feng, and R. Chan, “Laser operation of a heterojunction bipolar light-emitting transistor,” Applied Physics Letters, vol. 85, no. 20, pp. 4768-4770, 2004.
[4] H.-L. Wang, Y.-J. Huang, and C.-H. Wu, “Optical frequency response analysis of light-emitting transistors under different microwave configurations,” Applied Physics Letters, vol. 103, no. 5, pp. 051110, 2013/07/29, 2013.
[5] C.-T. Tung, S.-W. Chang, and C.-H. Wu, “Theoretical analysis on optical frequency response of tunnel-junction transistor lasers operated in different configurations,” Journal of Applied Physics, vol. 125, no. 2, 2019.
[6] M. Feng, N. Holonyak, H. W. Then, C. H. Wu, and G. Walter, “Tunnel junction transistor laser,” Applied Physics Letters, vol. 94, no. 4, 2009.
[7] F. Tan, R. Bambery, M. Feng, and N. Holonyak, “Transistor laser with simultaneous electrical and optical output at 20 and 40 Gb/s data rate modulation,” Applied Physics Letters, vol. 99, no. 6, 2011.
[8] B. Faraji, S. Wei, D. L. Pulfrey, and L. Chrostowski, “Analytical Modeling of the Transistor Laser,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 15, no. 3, pp. 594-603, 2009.
[9] M. Feng, N. Holonyak, G. Walter, and R. Chan, “Room temperature continuous wave operation of a heterojunction bipolar transistor laser,” Applied Physics Letters, vol. 87, no. 13, 2005.
[10] M. Feng, N. Holonyak, H. W. Then, and G. Walter, “Charge control analysis of transistor laser operation,” Applied Physics Letters, vol. 91, no. 5, 2007.
[11] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Estimated threshold base current and light power output of a transistor laser with InGaAs quantum well in GaAs base,” Semiconductor Science and Technology, vol. 26, no. 10, pp. 105014, 2011/09/14, 2011.
[12] R. Basu, B. Mukhopadhyay, and P. K. Basu, “Analytical model for threshold-base current of a transistor laser with multiple quantum wells in the base,” Iet Optoelectronics, vol. 7, no. 3, pp. 71-76, Jun, 2013.
[13] B. Faraji, W. Shi, D. L. Pulfrey, and L. Chrostowski, “Common-emitter and common-base small-signal operation of the transistor laser,” Applied Physics Letters, vol. 93, no. 14, 2008.
[14] A. James, N. Holonyak, M. Feng, and G. Walter, “Franz–Keldysh Photon-Assisted Voltage-Operated Switching of a Transistor Laser,” IEEE Photonics Technology Letters, vol. 19, no. 9, pp. 680-682, 2007.
[15] H. L. Wang, Y. H. Huang, G. S. Cheng, S. W. Chang, and C. H. Wu, “Analysis of Tunable Internal Loss Caused by Franz-Keldysh Absorption in Transistor Lasers,” Ieee Journal of Selected Topics in Quantum Electronics, vol. 21, no. 6, Nov-Dec, 2015.
[16] M. Feng, J. Qiu, C. Y. Wang, and N. Holonyak, “Tunneling modulation of a quantum-well transistor laser,” Journal of Applied Physics, vol. 120, no. 20, Nov, 2016.
[17] M. Feng, J. Y. Qiu, C. Y. Wang, and N. Holonyak, “Intra-cavity photon-assisted tunneling collector-base voltage-mediated electron-hole spontaneous-stimulated recombination transistor laser,” Journal of Applied Physics, vol. 119, no. 8, Feb, 2016.
[18] M. Feng, J. Y. Qiu, and N. Holonyak, “Tunneling Modulation of Transistor Lasers: Theory and Experiment,” Ieee Journal of Quantum Electronics, vol. 54, no. 2, Apr, 2018.
[19] M. K. Wu, M. Feng, and N. Holonyak, “Voltage modulation of a vertical cavity transistor laser via intra-cavity photon-assisted tunneling,” Applied Physics Letters, vol. 101, no. 8, 2012.
[20] H. W. Then, C. H. Wu, G. Walter, M. Feng, and N. Holonyak, “Electrical-optical signal mixing and multiplication (2→22 GHz) with a tunnel junction transistor laser,” Applied Physics Letters, vol. 94, no. 10, 2009.
[21] C. H. Chang, S. W. Chang, and C. H. Wu, “Theory for voltage modulation of transistor lasers using Franz-Keldysh absorption in the presence of optoelectronic feedback,” Opt Express, vol. 24, no. 22, pp. 25515-25527, Oct 31, 2016.
[22] G. Walter, A. James, N. Holonyak, and M. Feng, “Chirp in a transistor laser: Franz-Keldysh reduction of the linewidth enhancement,” Applied Physics Letters, vol. 90, no. 9, pp. 091109, 2007/02/26, 2007.
[23] C. T. Tung, C. H. Chang, S. W. Chang, and C. H. Wu, “Pulse compression irrespective of fiber dispersion using chirp of transistor lasers,” Opt Lett, vol. 44, no. 8, pp. 2109-2112, Apr 15, 2019.
[24] H. W. Then, M. Feng, and N. Holonyak, “The Transistor Laser: Theory and Experiment,” Proceedings of the Ieee, vol. 101, no. 10, pp. 2271-2298, Oct, 2013.
[25] Y.-H. Chang, Y.-L. Chou, S.-W. Chang, and C.-H. Wu, “Thermally-enhanced current gain of quantum-well heterojunction bipolar transistor,” Journal of Applied Physics, vol. 126, no. 1, 2019.
[26] S. M. Sze, and K. K. Ng, Physics of Semiconductor devices, USA: Wiley, 2007.
[27] H. Statz, and G. deMars, Quantum Electronics, New York: Columbia Univ. Press 1960.
[28] T. Moriizumi, and K. Takahashi, “Theoretical analysis of heterojunction phototransistors,” IEEE Transactions on Electron Devices, vol. 19, no. 2, pp. 152-159, 1972.
[29] K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev., vol. 130, pp. 2204, 1963.
[30] C.-H. Chang, “Physical Model with Voltage Modulation in Transistor Lasers and Fabrication of the Blue Light-Emitting Transistor,” Graduate Institute of Photonics and Optoelectronics, National Taiwan University.
[31] N. Suzuki, and T. Ozeki, “Simultaneous compensation of laser chirp, Kerr effect, and dispersion in 10-Gb/s long-haul transmission systems,” Journal of Lightwave Technology, vol. 11, no. 9, pp. 1486-1494, 1993.
[32] J. van Howe, G. Zhu, and C. Xu, “Compensation of self-phase modulation in fiber-based chirped-pulse amplification systems,” Optics Letters, vol. 31, no. 11, pp. 1756-1758, 2006/06/01, 2006.
[33] S. Tahvili, S. Latkowski, B. Smalbrugge, X. J. M. Leijtens, P. J. Williams, M. J. Wale, J. Parra-Cetina, R. Maldonado-Basilio, P. Landais, M. K. Smit, and E. A. J. M. Bente, “InP-Based Integrated Optical Pulse Shaper: Demonstration of Chirp Compensation,” IEEE Photonics Technology Letters, vol. 25, no. 5, pp. 450-453, 2013.
[34] C.-T. Tung, S.-W. Chang, and C.-H. Wu, “Chirp-free optical-signal generation using dual-and-direct current-voltage modulation of transistor lasers,” Optics Letters, vol. 45, no. 9, pp. 2474-2477, 2020/05/01, 2020.
[35] Coldren, L. A., S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits: John Wiley Sons, 2012.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57838-
dc.description.abstract穿隧接面電晶體雷射 (TJTL) 是一種新型的光源,它的操作方式就像電晶體一樣,而且還擁有電與光的雙重輸出。除了和一般二極體雷射一樣有電流調變,在基極-集極接面的強力電場會造成法蘭茲-凱爾迪西效應 (Franz-Keldysh effect),這使得基極-集極接面形同一個內建的電吸收調製器。因此在穿隧接面電晶體雷射中,光輸出除了可以用傳統的電流輸入來控制外,我們還能利用基極-集極接面的電壓來進行調控。在這篇論文中,我們建立了穿隧接面電晶體雷射的理論模型,其中包括了基於量子井與腔內法蘭茲-凱爾迪西光子協助穿隧而修改的電荷控制模型和雷射速率方程式。藉由這個理論模型,我們模擬了穿隧接面電晶體雷射的直流與交流特性,並且我們探討了集極參雜濃度,量子井在基極的位置,不同小訊號的操作模式與元件的大小尺寸,對於穿隧式電晶體雷射的性能表現的影響。
另一方面,我們也研究了穿隧接面電晶體雷射的頻率啁啾響應。電流調變與電壓調變同樣會使穿隧接面電晶體雷射產生啁啾。我們研發出了一種系統架構,同時使用電流調變與電壓調變來使得最後的光輸出的啁啾為零。只要我們選用適當的輸入信號,穿隧接面電晶體雷射所產生的光訊號,就能在長距離的光纖通訊當中以不失真的方式傳播。
zh_TW
dc.description.abstractTunnel junction transistor laser (TJTL) is a new type of optical transmitter which can be modulated as a transistor and has dual electrical and optical outputs. In additional to the direct current modulation of diode lasers, the strong electrical field in the BC junction causes the Franz-Keldysh effect which acts as an internal electro-absorption modulator. Therefore, TJTL can not only control the photon output with the current injection but also the BC junction voltage. In this work, we construct the theoretical model to TJTLs including the charge control model and the modified laser rate equation describing the quantum well effect and intracavity Franz-Keldysh photon assisted tunneling. With this model, we simulate the DC and AC characteristics of the TJTL and study the effect of the collector-doping concentration, quantum well position, small-signal configuration and the device size on the performance of TJTLs.
On the other hand, we investigate the chirps induced by the current and voltage modulation of TJTLs. The principle of generating the chirp-free signals using the dual current and voltage modulation of TJTLs is demonstrated. With the proper setting of pulse shapes for the inputs, we simulate that optical signals from TJTLs can be used for the long-distance optical fiber communication without distortion.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:06:39Z (GMT). No. of bitstreams: 1
U0001-1607202020213000.pdf: 6481751 bytes, checksum: 1d6f129be664df28fdeedfabb6fc0b37 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 II
中文摘要 III
Abstract IV
Table of Contents V
List of Figures VII
List of Tables XIII
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Transistor lasers and tunnel junction transistor lasers 4
1.3. Organization of work 7
Chapter 2. Theoretical Model of Tunnel Junction Transistor Lasers 8
2.1. Preface 8
2.2. Simulation structure of the TJTL 9
2.3. Modeling tunnel junction transistor lasers 10
2.3.1. Charge control model 10
2.3.2. Laser rate equations of TJTLs 14
2.3.3. Absorption coefficient BC junction 16
2.3.4. Confinement factor 19
2.3.5. Collector current 20
2.3.6. Base-emitter voltage 21
2.4. DC characteristics of tunnel junction transistor laser 23
2.4.1. DC analysis 23
2.4.2. Family curves of the TJTL 24
2.4.3. Effect of the collector-doping concentration 27
2.4.4. Effect of the QW position 28
Chapter 3. AC Analysis of Tunnel Junction Transistor Lasers 33
3.1. Preface 33
3.2. Small-signal frequency response 34
3.2.1. AC analysis of the theoretical model 34
3.2.2. Intrinsic optical response 38
3.2.3. Electrical small-signal model 40
3.2.4. Overall optical response 48
3.3. Further discussions of optical frequency responses 51
3.3.1. Collector-doping concentration 51
3.3.2. Quantum well position 54
3.3.3. Different configurations 58
3.3.4. Shrinking device 62
Chapter 4. Chirp-free Signal Generation of TJTLs 64
4.1 Preface 64
4.2 Chirps of TJTLs 65
4.3 Generating chirp-free signals 69
Chapter 5. Conclusion 79
References 81
dc.language.isoen
dc.subject頻率啁啾zh_TW
dc.subject光纖通訊zh_TW
dc.subject法蘭茲-凱爾迪西效應zh_TW
dc.subject電晶體雷射zh_TW
dc.subject穿隧接面電晶體雷射zh_TW
dc.subject光頻率響應zh_TW
dc.subjectOptical fiber communicationen
dc.subjectTransistor laseren
dc.subjectTunnel junction transistor laseren
dc.subjectFranz-Keldysh effecten
dc.subjectOptical frequency responseen
dc.subjectFrequency chirpingen
dc.title穿隧接面電晶體雷射物理模型與其零啁啾通訊之研究zh_TW
dc.titlePhysical Model and Chirp-free Communication of Tunnel Junction Transistor Lasersen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid吳肇欣(0000-0001-7849-773X)
dc.contributor.oralexamcommittee張書維(Shu-Wei Chang),吳育任(Yuh-Renn Wu),盧廷昌(Tien-chang Lu)
dc.contributor.oralexamcommittee-orcid張書維(0000-0003-0880-2385),吳育任(0000-0002-1457-3681),盧廷昌(0000-0003-4192-9919)
dc.subject.keyword電晶體雷射,穿隧接面電晶體雷射,法蘭茲-凱爾迪西效應,光頻率響應,頻率啁啾,光纖通訊,zh_TW
dc.subject.keywordTransistor laser,Tunnel junction transistor laser,Franz-Keldysh effect,Optical frequency response,Frequency chirping,Optical fiber communication,en
dc.relation.page83
dc.identifier.doi10.6342/NTU202001580
dc.rights.note有償授權
dc.date.accepted2020-07-23
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1607202020213000.pdf
  未授權公開取用
6.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved