請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57835
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張芳嘉 | |
dc.contributor.author | Tzu-Rung Huang | en |
dc.contributor.author | 黃子容 | zh_TW |
dc.date.accessioned | 2021-06-16T07:06:28Z | - |
dc.date.available | 2017-09-05 | |
dc.date.copyright | 2014-09-05 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-10 | |
dc.identifier.citation | 1. Achermann P. The two-process model of sleep regulation revisited. Aviation, space, and environmental medicine 75: A37-43, 2004.
2. Allan SM, Tyrrell PJ, and Rothwell NJ. Interleukin-1 and neuronal injury. Nature reviews Immunology 5: 629-640, 2005. 3. Badawy RA, Harvey AS, and Macdonell RA. Cortical hyperexcitability and epileptogenesis: understanding the mechanisms of epilepsy - part 1. Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia 16: 355-365, 2009. 4. Bazil CW, Castro LH, and Walczak TS. Reduction of rapid eye movement sleep by diurnal and nocturnal seizures in temporal lobe epilepsy. Archives of neurology 57: 363-368, 2000. 5. Bellinger FP, Madamba S, and Siggins GR. Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain research 628: 227-234, 1993. 6. Berg AT, and Scheffer IE. New concepts in classification of the epilepsies: entering the 21st century. Epilepsia 52: 1058-1062, 2011. 7. Borbely AA. A two process model of sleep regulation. Human neurobiology 1: 195-204, 1982. 8. Borbely AA, and Achermann P. Sleep homeostasis and models of sleep regulation. Journal of biological rhythms 14: 557-568, 1999. 9. Brambilla D, Barajon I, Bianchi S, Opp MR, and Imeri L. Interleukin-1 inhibits putative cholinergic neurons in vitro and REM sleep when microinjected into the rat laterodorsal tegmental nucleus. Sleep 33: 919-929, 2010. 10. Bredow S, Guha-Thakurta N, Taishi P, Obal F, Jr., and Krueger JM. Diurnal variations of tumor necrosis factor alpha mRNA and alpha-tubulin mRNA in rat brain. Neuroimmunomodulation 4: 84-90, 1997. 11. Cearley C, Churchill L, and Krueger JM. Time of day differences in IL1beta and TNFalpha mRNA levels in specific regions of the rat brain. Neuroscience letters 352: 61-63, 2003. 12. Chang FC, and Opp MR. Corticotropin-releasing hormone (CRH) as a regulator of waking. Neuroscience and biobehavioral reviews 25: 445-453, 2001. 13. Chen L, Taishi P, Majde JA, Peterfi Z, Obal F, Jr., and Krueger JM. The role of nitric oxide synthases in the sleep responses to tumor necrosis factor-alpha. Brain, behavior, and immunity 18: 390-398, 2004. 14. Claycomb RJ, Hewett SJ, and Hewett JA. Neuromodulatory role of endogenous interleukin-1beta in acute seizures: possible contribution of cyclooxygenase-2. Neurobiology of disease 45: 234-242, 2012. 15. Clinton JM, Davis CJ, Zielinski MR, Jewett KA, and Krueger JM. Biochemical regulation of sleep and sleep biomarkers. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 7: S38-42, 2011. 16. Colotta F, Dower SK, Sims JE, and Mantovani A. The type II 'decoy' receptor: a novel regulatory pathway for interleukin 1. Immunology today 15: 562-566, 1994. 17. Dadmehr N, Congbalay DR, Pakalnis A, and Drake ME, Jr. Sleep and waking disturbances in epilepsy. Clinical EEG 18: 136-141, 1987. 18. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, and Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. The European journal of neuroscience 12: 2623-2633, 2000. 19. del Rey A, Balschun D, Wetzel W, Randolf A, and Besedovsky HO. A cytokine network involving brain-borne IL-1beta, IL-1ra, IL-18, IL-6, and TNFalpha operates during long-term potentiation and learning. Brain, behavior, and immunity 33: 15-23, 2013. 20. Dube C, Vezzani A, Behrens M, Bartfai T, and Baram TZ. Interleukin-1beta contributes to the generation of experimental febrile seizures. Annals of neurology 57: 152-155, 2005. 21. Fang J, Wang Y, and Krueger JM. Effects of interleukin-1 beta on sleep are mediated by the type I receptor. The American journal of physiology 274: R655-660, 1998. 22. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, and Engel J, Jr. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46: 470-472, 2005. 23. Floyd RA, and Krueger JM. Diurnal variation of TNF alpha in the rat brain. Neuroreport 8: 915-918, 1997. 24. Franken P, Tobler I, and Borbely AA. Effects of 12-h sleep deprivation and of 12-h cold exposure on sleep regulation and cortical temperature in the rat. Physiology & behavior 54: 885-894, 1993. 25. Franklin KBJ, and Paxinos G. The mouse brain in stereotaxic coordinates, second ed. Academic press, New york, 2001. 26. Gemma C, Imeri L, de Simoni MG, and Mancia M. Interleukin-1 induces changes in sleep, brain temperature, and serotonergic metabolism. The American journal of physiology 272: R601-606, 1997. 27. Giorelli AS, Neves GS, Venturi M, Pontes IM, Valois A, and Gomes Mda M. Excessive daytime sleepiness in patients with epilepsy: a subjective evaluation. Epilepsy & behavior : E&B 21: 449-452, 2011. 28. Gutter T, and de Weerd AW. Effects of daytime secondarily generalized epileptic seizures on sleep during the following night. Epilepsy & behavior : E&B 25: 289-294, 2012. 29. He XP, Minichiello L, Klein R, and McNamara JO. Immunohistochemical evidence of seizure-induced activation of trkB receptors in the mossy fiber pathway of adult mouse hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience 22: 7502-7508, 2002. 30. Irwin MR, Olmstead R, Valladares EM, Breen EC, and Ehlers CL. Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biological psychiatry 66: 191-195, 2009. 31. Jain SV, Horn PS, Simakajornboon N, and Glauser TA. Obstructive sleep apnea and primary snoring in children with epilepsy. Journal of child neurology 28: 77-82, 2013. 32. Jain SV, Simakajornboon N, and Glauser TA. Provider practices impact adequate diagnosis of sleep disorders in children with epilepsy. Journal of child neurology 28: 589-595, 2013. 33. Kapsimalis F, Richardson G, Opp MR, and Kryger M. Cytokines and normal sleep. Current opinion in pulmonary medicine 11: 481-484, 2005. 34. Krueger JM. The role of cytokines in sleep regulation. Current pharmaceutical design 14: 3408-3416, 2008. 35. Krueger JM, Fang J, Taishi P, Chen Z, Kushikata T, and Gardi J. Sleep. A physiologic role for IL-1 beta and TNF-alpha. Annals of the New York Academy of Sciences 856: 148-159, 1998. 36. Krueger JM, and Majde JA. Humoral links between sleep and the immune system: research issues. Annals of the New York Academy of Sciences 992: 9-20, 2003. 37. Krueger JM, Obal FJ, Fang J, Kubota T, and Taishi P. The role of cytokines in physiological sleep regulation. Annals of the New York Academy of Sciences 933: 211-221, 2001. 38. Kubota T, Li N, Guan Z, Brown RA, and Krueger JM. Intrapreoptic microinjection of TNF-alpha enhances non-REM sleep in rats. Brain research 932: 37-44, 2002. 39. Lopez MR, Cheng JY, Kanner AM, Carvalho DZ, Diamond JA, and Wallace DM. Insomnia symptoms in South Florida military veterans with epilepsy. Epilepsy & behavior : E&B 27: 159-164, 2013. 40. Lue FA, Bail M, Jephthah-Ochola J, Carayanniotis K, Gorczynski R, and Moldofsky H. Sleep and cerebrospinal fluid interleukin-1-like activity in the cat. The International journal of neuroscience 42: 179-183, 1988. 41. Mackiewicz M, Sollars PJ, Ogilvie MD, and Pack AI. Modulation of IL-1 beta gene expression in the rat CNS during sleep deprivation. Neuroreport 7: 529-533, 1996. 42. Manfridi A, Brambilla D, Bianchi S, Mariotti M, Opp MR, and Imeri L. Interleukin-1beta enhances non-rapid eye movement sleep when microinjected into the dorsal raphe nucleus and inhibits serotonergic neurons in vitro. The European journal of neuroscience 18: 1041-1049, 2003. 43. Manni R, Zambrelli E, Bellazzi R, and Terzaghi M. The relationship between focal seizures and sleep: an analysis of the cyclic alternating pattern. Epilepsy research 67: 73-80, 2005. 44. Marchi N, Fan Q, Ghosh C, Fazio V, Bertolini F, Betto G, Batra A, Carlton E, Najm I, Granata T, and Janigro D. Antagonism of peripheral inflammation reduces the severity of status epilepticus. Neurobiology of disease 33: 171-181, 2009. 45. Maroso M, Balosso S, Ravizza T, Liu J, Bianchi ME, and Vezzani A. Interleukin-1 type 1 receptor/Toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. Journal of internal medicine 270: 319-326, 2011. 46. Matos G, Tsai R, Baldo MV, de Castro I, Sameshima K, and Valle AC. The sleep-wake cycle in adult rats following pilocarpine-induced temporal lobe epilepsy. Epilepsy & behavior : E&B 17: 324-331, 2010. 47. McIntyre DC, and Gilby KL. Parahippocampal networks, intractability, and the chronic epilepsy of kindling. Advances in neurology 97: 77-83, 2006. 48. McIntyre DC, and Kelly ME. The parahippocampal cortices and kindling. Annals of the New York Academy of Sciences 911: 343-354, 2000. 49. Miller LG, Galpern WR, Dunlap K, Dinarello CA, and Turner TJ. Interleukin-1 augments gamma-aminobutyric acidA receptor function in brain. Molecular pharmacology 39: 105-108, 1991. 50. Ng MS, Hwang P, and Burnham WM. Afterdischarge threshold reduction in the kindling model of epilepsy. Epilepsy research 72: 97-101, 2006. 51. Omran A, Peng J, Zhang C, Xiang QL, Xue J, Gan N, Kong H, and Yin F. Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia 53: 1215-1224, 2012. 52. Piperidou C, Karlovasitou A, Triantafyllou N, Terzoudi A, Constantinidis T, Vadikolias K, Heliopoulos I, Vassilopoulos D, and Balogiannis S. Influence of sleep disturbance on quality of life of patients with epilepsy. Seizure : the journal of the British Epilepsy Association 17: 588-594, 2008. 53. Pung T, and Schmitz B. Circadian rhythm and personality profile in juvenile myoclonic epilepsy. Epilepsia 47 Suppl 2: 111-114, 2006. 54. Quigg M, Straume M, Smith T, Menaker M, and Bertram EH. Seizures induce phase shifts of rat circadian rhythms. Brain research 913: 165-169, 2001. 55. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalography and clinical neurophysiology 32: 281-294, 1972. 56. Ravizza T, and Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 137: 301-308, 2006. 57. Ross FM, Allan SM, Rothwell NJ, and Verkhratsky A. A dual role for interleukin-1 in LTP in mouse hippocampal slices. Journal of neuroimmunology 144: 61-67, 2003. 58. Samaitiene R, Norkuniene J, Tumiene B, and Grikiniene J. Sleep and behavioral problems in rolandic epilepsy. Pediatric neurology 48: 115-122, 2013. 59. Sashindranath M, McLean KJ, Trounce IA, Cotton RG, and Cook MJ. Early hippocampal oxidative stress is a direct consequence of seizures in the rapid electrical amygdala kindling model. Epilepsy research 90: 285-294, 2010. 60. Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR, and Haeri Rohani A. Antiepileptogenic and anticonvulsant activity of interleukin-1 beta in amygdala-kindled rats. Experimental neurology 191: 145-153, 2005. 61. Schneider H, Pitossi F, Balschun D, Wagner A, del Rey A, and Besedovsky HO. A neuromodulatory role of interleukin-1beta in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America 95: 7778-7783, 1998. 62. Schubert M, Siegmund H, Pape HC, and Albrecht D. Kindling-induced changes in plasticity of the rat amygdala and hippocampus. Learning & memory 12: 520-526, 2005. 63. Schwierin B, Borbely AA, and Tobler I. Prolonged effects of 24-h total sleep deprivation on sleep and sleep EEG in the rat. Neuroscience letters 261: 61-64, 1999. 64. Sharma RP, He Q, Johnson VJ, and Suzuki H. Mice lacking both TNFalpha receptors show increased constitutive expression of IFNgamma: a possible reason for lack of protection from fumonisin B1 hepatotoxicity. Cytokine 34: 260-270, 2006. 65. Smith PD, McLean KJ, Murphy MA, Turnley AM, and Cook MJ. Functional dentate gyrus neurogenesis in a rapid kindling seizure model. The European journal of neuroscience 24: 3195-3203, 2006. 66. Smith PD, McLean KJ, Murphy MA, Turnley AM, and Cook MJ. Seizures, not hippocampal neuronal death, provoke neurogenesis in a mouse rapid electrical amygdala kindling model of seizures. Neuroscience 136: 405-415, 2005. 67. Taishi P, Bredow S, Guha-Thakurta N, Obal F, Jr., and Krueger JM. Diurnal variations of interleukin-1 beta mRNA and beta-actin mRNA in rat brain. Journal of neuroimmunology 75: 69-74, 1997. 68. Taishi P, Chen Z, Obal F, Jr., Hansen MK, Zhang J, Fang J, and Krueger JM. Sleep-associated changes in interleukin-1beta mRNA in the brain. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research 18: 793-798, 1998. 69. Tanabe M, Matsumoto T, Shibuya K, Tateda K, Miyazaki S, Nakane A, Iwakura Y, and Yamaguchi K. Compensatory response of IL-1 gene knockout mice after pulmonary infection with Klebsiella pneumoniae. Journal of medical microbiology 54: 7-13, 2005. 70. Terao A, Matsumura H, Yoneda H, and Saito M. Enhancement of slow-wave sleep by tumor necrosis factor-alpha is mediated by cyclooxygenase-2 in rats. Neuroreport 9: 3791-3796, 1998. 71. Vendrame M, Yang B, Jackson S, and Auerbach SH. Insomnia and epilepsy: a questionnaire-based study. Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine 9: 141-146, 2013. 72. Vezzani A, Friedman A, and Dingledine RJ. The role of inflammation in epileptogenesis. Neuropharmacology 69: 16-24, 2013. 73. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, De Simoni MG, Sperk G, Andell-Jonsson S, Lundkvist J, Iverfeldt K, and Bartfai T. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proceedings of the National Academy of Sciences of the United States of America 97: 11534-11539, 2000. 74. Wang SJ, and Gean PW. Long-term depression of excitatory synaptic transmission in the rat amygdala. The Journal of neuroscience : the official journal of the Society for Neuroscience 19: 10656-10663, 1999. 75. Xu X, Brandenburg NA, McDermott AM, and Bazil CW. Sleep disturbances reported by refractory partial-onset epilepsy patients receiving polytherapy. Epilepsia 47: 1176-1183, 2006. 76. Yi PL, Chen YJ, Lin CT, and Chang FC. Occurrence of epilepsy at different zeitgeber times alters sleep homeostasis differently in rats. Sleep 35: 1651-1665, 2012. 77. Yi PL, Tsai CH, Lin JG, Lee CC, and Chang FC. Kindling stimuli delivered at different times in the sleep-wake cycle. Sleep 27: 203-212, 2004. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57835 | - |
dc.description.abstract | 癲癇與睡眠障礙經常相互伴隨而影響,然而對於癲癇誘發睡眠障礙的相關機制仍有待釐清。第一介白素 (interleukin-1) 為重要睡眠調節物質 (sleep regulatory substances; SRSs) 之一,且已被證實於病理性傷害時濃度會大量上升。先前實驗室實驗已證實不同 zeitgeber time (ZT) 發作之癲癇對於睡眠的改變也不相同,且第一介白素在 ZT13 癲癇導致之睡眠改變中具有一定重要性。故本實驗探討第一介白素第一型受體之剔除 (IL-1R1 knockout; IL-1R1 +/- & -/-) 是否能夠影響癲癇誘發的閾值,及探討 ZT13 癲癇發作後第一介白素之濃度改變與睡眠障礙之關聯性。
實驗方法利用 IL-1R1 knockout 之小鼠,手術植入腦波圖電極於腦皮質表面,另一雙極性電極植入於左側杏仁核之底側核 (basolateral nucleus of amygdala)。紀錄腦波圖,並與wildtype小鼠比較其正常睡眠之變化。以 rapid electrical amygdala kindling model (REAK) 誘發癲癇形成並探討第一介白素於癲癇誘發中扮演的角色。隔日給予電刺激誘發ZT13癲癇,紀錄睡眠腦波圖之改變,並比較IL-1R1 knockout小鼠與wildtype小鼠之異常以探討第一介白素對癲癇誘發睡眠改變之影響。 IL-1R1 knockout小鼠與wildtype小鼠間之癲癇閾值改變並無統計上顯著意義。在正常睡眠周期, IL-1R1 -/- 小鼠的黑暗期非快速動眼期睡眠 (non-rapid eye movement sleep; non-REM sleep; NREM sleep) 較 wildtype 小鼠與 IL-1R1 +/- 小鼠顯著升高,而快速動眼期睡眠則依wildtype、IL-1R1 +/-、IL-1R1 -/- 小鼠依序顯著下降。誘發ZT13癲癇後, wildtype 小鼠於癲癇後六小時內 NREM sleep 顯著上升,但在 IL-1R1 knockout小鼠則皆無NREM sleep的顯著改變,故推測 IL-1 R1 對 ZT13 癲癇發作後睡眠的改變中扮演重要角色。 本實驗證明 IL-1R1小鼠對癲癇誘發閾值的改變較無顯著作用,但對癲癇誘發後之睡眠障礙扮演非常重要之角色。 | zh_TW |
dc.description.abstract | Epilepsy and sleep are very closely related, but the mechanisms behind epilepsy-induced sleep disturbances are yet to be completely clarified. Interleukin-1 (IL-1), a sleep regulatory substance (SRS), is evidenced to participate in many pathological sleep changes. Our previous studies have demonstrated that seizure occurred at different zeitgeber time (ZT) alters sleep differently and IL-1 mediates the sleep alterations induced by ZT13 epilepsy. In this study, we determined the role of IL-1 type 1 receptor (IL-1R1) in epileptogenesis and in epilepsy-induced sleep disruptions using IL-1R1 homozygous and heterozygous knockout (IL-1R1 -/- and +/-) mice.
Mice were surgically implanted with electroencephalogram (EEG) electrodes to record the sleep-wake activities. The difference of undisturbed sleep among wildtype and IL-1R1 knockout mice were obtained to evaluate the importance of IL-1R1 in sleep regulation. Rapid electrical amygdala kindling (REAK) was performed to induce epilepsy at a particular zeitgeber time (ZT), ZT13, and to determine the role of IL-1R1 in epileptogenesis. Sleep-wake activities before and after ZT13 kindling stimulation were acquired to evaluate the role of IL-1R1 in epilepsy-induced sleep alterations by comparing the difference between wildtype and IL-1R1 knockout mice. The difference of seizure threshold indicators, such as the after-discharge threshold (ADT), a successful kindling rate and Racine’s stage seizures, were not significantly altered among wildtype, IL-1R1 +/- and IL-1R -/- mice, suggesting the lesser significance of IL-1R1 in epileptogenesis. Non-rapid eye movement (non-REM; NREM) sleep obtained from IL-1R1 -/- mice during the dark period (ZT13-24) was significantly higher than that acquired from wildtype and IL-1R1 +/- mice, and REM sleep declined in both IL-1R1 +/- and IL-1R1 -/- mice during the light period (ZT’1-12). ZT13 kindling stimulation significantly enhanced NREM sleep during the subsequent 6 hours (ZT13-18) and decreased NREM sleep during ZT23-24 in wildtype mice. These sleep alterations, however, were not exhibited in either IL-1R1 +/- or IL-1R -/- mice. This study demonstrated that IL-1R1 may have a diminutive role in epileptogenesis, but plays an important role in modulating epilepsy-induced sleep disturbances. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T07:06:28Z (GMT). No. of bitstreams: 1 ntu-103-R01629008-1.pdf: 1453736 bytes, checksum: e40e2e33306aefc6d16186ba0324ede9 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 1
Abstract 2 Introduction 4 1.1 Epilepsy 4 1.2 Sleep 4 1.3 Epilepsy and sleep disorders 6 1.4 Interleukin-1 7 1.5 Specific aims 10 Material and methods 11 2.1 Animals and surgeries 11 2.2 Apparatus and recording 12 2.3 Kindling manipulation 13 2.4 Experimental protocols 14 2.5 CRH ELISA 15 2.6 PCR genotying 16 2.7 Statistical analysis 17 2.7.1 Sleep recording 17 2.7.2 Seizure threshold 17 2.7.3 CRH ELISA 18 Results 19 3.1 The role of IL-1R1 in developing epilepsy by the REAK kindling protocol 19 3.2 REAK-induced sleep alterations 20 3.3 The undisturbed sleep among the wildtype, IL-1R1 +/- and IL-1R1 -/- mice 21 3.4 ZT13 kindling-induced sleep alterations 22 3.4.1 ZT13 kindling-induced sleep alterations in wildtype mice 22 3.4.2 ZT13 kindling-induced sleep alterations in IL-1 R1 +/- mice 23 3.4.3 ZT13 kindling-induced sleep alterations in IL-1 R1 -/- mice 24 3.5 CRH ELISA 26 3.6 PCR genotyping 26 Discussion 27 4.1 Adjustment of kindling procedures 27 4.2 The role of interleukin-1 receptor in kindling processes 28 4.3 REAK-induced sleep alterations 29 4.4 Comparison of undisturbed sleep between wildtype and IL-1R1 knockout mice 31 4.5 ZT13 kindling-induced sleep alterations 34 Conclusion 37 Figures 38 Figure 1—The kindled epileptiform EEGs (panel A) and the baseline EEGs (panel B). 38 Figure 2—The diagram of experimental protocol. 39 Figure 4—Effects of REAK on NREM sleep, REM sleep and Wakefulness in wildtype mice. 41 Figure 5—Difference of undisturbed sleep among three groups of mice. 43 Figure 6—The effects of ZT13 kindling stimuli on sleep alterations in wildtype mice. 45 Figure 7—The effects of ZT13 kindling stimuli on sleep alterations in IL-1R1 +/- mice. 47 Figure 8—The effects of ZT13 kindling stimuli on sleep alterations in IL-1R1 -/- mice. 49 Figure 9—IL-1R1 expression of the cerebral hemispheres from three strains of mice. 51 Figure 10—Routes of how IL-1R1 -/- affects the consequences after ZT13 kindling stimulation. 52 Tables 53 Table 1—Results of seizure threshold in three groups of mice. 53 Table 2 —Effects of ZT13 kindling on sleep-wake architecture of mice. 54 Table 3—Results of CRH ELISA in different brain regions. 55 Reference 56 | |
dc.language.iso | zh-TW | |
dc.title | 第一介白素受體在小鼠癲癇誘發之睡眠障礙中所扮演的角色 | zh_TW |
dc.title | The role of interleukin-1 receptor in kindling-induced sleep disruption in mice | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 徐崇堯,楊靜修,鄭穹翔,尹珮璐 | |
dc.subject.keyword | 杏仁核,癲癇,第一介白素,第一介白素受體,kindling,睡眠, | zh_TW |
dc.subject.keyword | Amygdala,epilepsy,IL-1,IL-1 receptor,kindling,sleep, | en |
dc.relation.page | 67 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-10 | |
dc.contributor.author-college | 獸醫專業學院 | zh_TW |
dc.contributor.author-dept | 獸醫學研究所 | zh_TW |
顯示於系所單位: | 獸醫學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。