請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57821
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳彥仰 | |
dc.contributor.author | Hou-Ren Chen | en |
dc.contributor.author | 陳厚任 | zh_TW |
dc.date.accessioned | 2021-06-16T07:05:37Z | - |
dc.date.available | 2014-07-15 | |
dc.date.copyright | 2014-07-15 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-10 | |
dc.identifier.citation | [1] 3d connexion. http://www.3dconnexion.com/. Accessed: 2014-05-04.
[2] Polhemus tracking system. http://www.polhemus.com/. Accessed: 2014-05-04. [3] R. Balakrishnan and I. S. MacKenzie. Performance differences in the fingers, wrist, and forearm in computer input control. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI ’97, pages 303–310. ACM. [4] P. Bartz. Razor ahrs v1.4.2. https://github.com/ptrbrtz/razor-9dof-ahrs. Accessed: 2014-05-04. [5] B. Bollensdorff, U. Hahne, and M. Alexa. The effect of perspective projection in multi-touch 3d interaction. In Proceedings of Graphics Interface 2012, GI ’12, pages 165–172. Canadian Information Processing Society, 2012. [6] M. Chen, S. J. Mountford, and A. Sellen. A study in interactive 3-d rotation using 2-d control devices. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88, pages 121–129. ACM, 1988. [7] B. Froehlich, J. Hochstrate, V. Skuk, and A. Huckauf. The globefish and the globemouse: Two new six degree of freedom input devices for graphics applications. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’06, pages 191–199. ACM. [8] L. GD, C. DB, and F. JA. An investigation of fitts’ law using a wide range of movement amplitudes. In Journal of Motor Behavior. 1976, pages 8(2) 113–128. PubMed. [9] M. Hachet, P. Guitton, and P. Reuter. The cat for efficient 2d and 3d interaction as an alternative to mouse adaptations. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST ’03, pages 225–232. ACM, 2003. [10] K. Hinckley, R. Pausch, J. C. Goble, and N. F. Kassell. Passive real-world interface props for neurosurgical visualization. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’94, pages 452–458. ACM, 1994. [11] K. Hinckley, J. Tullio, R. Pausch, D. Proffitt, and N. Kassell. Usability analysis of 3d rotation techniques. In Proceedings of the 10th Annual ACM Symposium on User Interface Software and Technology, pages 1–10. ACM, 1997. [12] M.-S. Kim, J.-K. Seong, D.-E. Hyun, K.-H. Lee, and Y.-J. Choi. A physical 3d trackball. In Proceedings of the 9th Pacific Conference on Computer Graphics and Applications, PG ’01, pages 134–. IEEE Computer Society. [13] S. Kratz, M. Rohs, D. Guse, J. Mu ̈ller, G. Bailly, and M. Nischt. Palmspace: Continuous around-device gestures vs. multitouch for 3d rotation tasks on mobile devices. In Proceedings of the International Working Conference on Advanced Visual Interfaces, AVI ’12, pages 181–188. ACM, 2012. [14] J. Lee, A. Olwal, H. Ishii, and C. Boulanger. Spacetop: Integrating 2d and spatial 3d interactions in a see-through desktop environment. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’13, pages 189–192. ACM, 2013. [15] I. Poupyrev, S. Weghorst, and S. Fels. Non-isomorphic 3d rotational techniques. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’00, pages 540–547. ACM, 2000. [16] P. Song, W. B. Goh, W. Hutama, C.-W. Fu, and X. Liu. A handle bar metaphor for virtual object manipulation with mid-air interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’12, pages 1297–1306. ACM, 2012. [17] D. J. Sturman, D. Zeltzer, and S. Pieper. Hands-on interaction with virtual environments. In Proceedings of the 2Nd Annual ACM SIGGRAPH Symposium on User Interface Software and Technology, UIST ’89, pages 19–24, New York, NY, USA, 1989. ACM. [18] R. Wang, S. Paris, and J. Popovi ́c. 6d hands: Markerless hand-tracking for computer aided design. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, UIST ’11, pages 549–558. ACM, 2011. [19] C. Ware and J. Rose. Rotating virtual objects with real handles. ACM Trans. Comput.-Hum. Interact., pages 162–180, 1999. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57821 | - |
dc.description.abstract | 在CAD (computer-aided design)軟體中操控3D空間中的虛擬物體在空間互動領域中相當重要。其中最快的即為等度(isotonic)的裝置。但現有研究的原形多沒有經過審慎的使用者評估。而且不同程度的虛實物體對應與物體的方向性資訊重要與否,至今仍未有定論。在空中及放置的裝置也並沒有過全面的比較。故我們發明了兩種裝置,並且探索這些問題的答案。我們進行了一個完整的使用者測試,比較現行代表性的等度裝置與我們的裝置,並分析得到的質化與量化數據,提供一系列設計原則供未來的研究做參考。我們發現,在操作CAD旋轉時,裝置是否為類圓形比裝置的映對程度更重要(79%的使用者選擇使用),52%的使用者覺得了解方向很重要,而空中的裝置也比放置的裝置更好,無論是在使用者喜好(64%)與主觀速度(75%)。 | zh_TW |
dc.description.abstract | To manipulate a 3D object in CAD was always an important issue in spatial interaction. However, the existing prototype for this purpose was not properly explored in respect of user behavior. Also, whether the orientation and the degrees of mapping were important was still an open question. And we didn't know whether in-air or on-the-ground manipulator was better. Therefore, we made two innovative manipulators to explore the question. We conducted a complete empirical study comparing current representative rotation devices with our own devices. Both quantitative and qualitative results were analyzed to provide a series of design principles for the future development in this field. We found that when manipulate the rotation in CAD software, the spherical attribute was more important than the shape mapping or orientation information (79% users preferred to use them). Also, 52% users found it helpful to know orientation. Moreover, in-air manipulator was better than on-the-ground one, both in user preference (64%) and subjective speed(75%.) | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T07:05:37Z (GMT). No. of bitstreams: 1 ntu-103-R01922013-1.pdf: 4017180 bytes, checksum: 0f865e262fa749bce02f66b91f1176dd (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 - ii
誌謝 - iii 摘要 - iv Abstract - v 1 Introduction - 1 1.1 Different degrees of mapping - 1 1.2 Tactile Orientation Indicator - 3 1.3 In-air or on-the ground - 5 2 Prototype - 6 2.1 oriSphere - 7 2.2 oriFish - 8 2.3 Fully Mapping Objects - 8 2.4 GlobeFish - 8 2.5 Core Module - 9 3 Evaluation - 10 3.1 Participants - 10 3.2 Apparatus - 10 3.3 Task Design - 11 3.4 Experiment Design - 12 3.5 Procedure - 13 4 Result -14 4.1 Quantitative Analysis - TCT and OED - 14 4.2 Qualitative Analysis - Ranking - 15 4.3 Qualitative Result - Ground Technique - 16 4.3.1 GlobeFish - 16 4.4 Qualitative Result - In-air Technique - 17 4.4.1 3D Ball - 17 4.4.2 oriSphere - 17 4.4.3 oriFish - 18 4.4.4 Fully Mapping - 19 4.5 Qualitative Result - User Consideration - 20 5 Discussion - 21 6 Conclusion - 23 Bibliography - 24 | |
dc.language.iso | en | |
dc.title | 以觸覺提供之方向性資訊探討虛實物體對應程度對使用者操作等度旋轉控制裝置之影響 | zh_TW |
dc.title | OriSphere: Utilizing the object orientation guided by tactile feedback to clarify the influence of different degrees of object mapping on isotonic rotational devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林維真,陳顥齡,梁容輝 | |
dc.subject.keyword | 人機介面,實體使用者介面,使用者經驗, | zh_TW |
dc.subject.keyword | Human-Computer Interaction,Tangible User Interface,User Experience, | en |
dc.relation.page | 26 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-10 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 3.92 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。