Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57772
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorTzu-Miao Hungen
dc.contributor.author洪慈妙zh_TW
dc.date.accessioned2021-06-16T07:02:46Z-
dc.date.available2020-08-20
dc.date.copyright2020-08-20
dc.date.issued2020
dc.date.submitted2020-08-10
dc.identifier.citation1. Watson, T., Therapeutic Ultrasound. 2015.
2. O’Brien, W.D., Ultrasound–biophysics mechanisms. Progress in Biophysics and Molecular Biology, 2007. 93(1): p. 212-255.
3. Nyborg, W.L., Ultrasonic microstreaming and related phenomena. The British Journal of Cancer. Supplement, 1982. 5: p. 156-160.
4. Wu, J., Shear stress in cells generated by ultrasound. Progress in Biophysics and Molecular Biology, 2007. 93(1): p. 363-373.
5. Johns, L.D., Nonthermal effects of therapeutic ultrasound: the frequency resonance hypothesis. Journal of athletic training, 2002. 37(3): p. 293.
6. Screen, H.R., et al., Tendon functional extracellular matrix. Journal of Orthopaedic Research, 2015. 33(6): p. 793-799.
7. Fratzl, P., et al., Fibrillar structure and mechanical properties of collagen. J Struct Biol, 1998. 122(1-2): p. 119-122.
8. Gutsmann, T., et al., Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophysical journal, 2004. 86(5): p. 3186-3193.
9. Fung, Y.C., Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1981: p. 222.
10. Kennedy, J.C., Hawkins. R.J., Willis, R.B.,et al., Tension studies of human knee ligaments. Yield point, ultimate failure, and disruption of the cruciate ant tibial colateral ligaments. J Bone Joint Surg, 1976: p. 58A, 350.
11. LaCroix, A.S., et al., Relationship between tendon stiffness and failure: a metaanalysis. Journal of Applied Physiology, 2013. 115(1): p. 43-51.
12. Wang, J.H., M.I. Iosifidis, and F.H. Fu, Biomechanical basis for tendinopathy. Clinical Orthopaedics and Related Research(1976-2007), 2006. 443: p. 320-332.
13. Pioletti, D.P., et al., Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. Journal of biomechanics, 1998. 31(8): p. 753-757.
14. Puxkandl, R., et al., Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2002. 357(1418): p. 191-197.
15. Machiraju, C., et al., Viscoelastic studies of human subscapularis tendon: relaxation test and a Wiechert model. Computer methods and programs in biomedicine, 2006. 83(1): p. 29-33.
16. Ciarletta, P. and M.B. Amar, A finite dissipative theory of temporary interfibrillar bridges in the extracellular matrix of ligaments and tendons. Journal of The Royal Society Interface, 2008: p. rsif. 2008.0487.
17. Yoon, J.H. and J. Halper, Tendon proteoglycans: biochemistry and function. J Musculoskelet Neuronal Interact, 2005. 5(1): p. 22-34.
18. Sharon, N., IUPAC-IUB Joint Commission on Biochemical Nomenclature(JCBN). Nomenclature of glycoproteins, glycopeptides and peptidoglycans. Recommendations 1985. Eur J Biochem, 1986. 159(1): p. 1-6.
19. Redaelli, A., et al., Possible role of decorin glycosaminoglycans in fibril to fibril force transfer in relative mature tendons--a computational study from molecular to microstructural level. J Biomech, 2003. 36(10): p. 1555-69.
20. Fessel, G. and J.G. Snedeker, Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon. Matrix Biol, 2009. 28(8): p. 503-10.
21. Fessel, G. and J.G. Snedeker, Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments. J Theor Biol, 2011. 268(1): p. 77-83.
22. Svensson, R.B., et al., Tensile Force Transmission in Human Patellar Tendon Fascicles Is Not Mediated by Glycosaminoglycans. Connective Tissue Research, 2011. 52(5): p. 415-421.
23. Legerlotz, K., G.P. Riley, and H.R.C. Screen, GAG depletion increases the stress-relaxation response of tendon fascicles, but does not influence recovery. Acta Biomaterialia, 2013. 9(6): p. 6860-6866.
24. Robinson, P., et al., Strain-Rate Sensitive Mechanical Properties of Tendon Fascicles From Mice With Genetically Engineered Alterations in Collagen and Decorin. Journal of Biomechanical Engineering, 2004. 126(2): p. 252.
25. Screen, H.R.C., et al., Cyclic tensile strain upregulates collagen synthesis in isolated tendon fascicles. Biochemical and Biophysical Research Communications, 2005. 336(2): p. 424-429.
26. Rigozzi, S., et al., Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding #x2014;AFM observations at the nanoscale. Journal of Biomechanics. 46(4): p. 813-818.
27. Wood, M.L., et al., Tendon Creep Is Potentiated by NKISK and Relaxin Which Produce Collagen Fiber Sliding. The Iowa Orthopaedic Journal, 2003. 23: p. 75-79.
28. Esther Robert, J., et al., Effect of NKISK on tendon lengthening: An in vivo model for various clinically applicable dosing regimens. Journal of Orthopaedic Research, 2008. 26(7): p. 971-976.
29. Rowe, R.W.D., The Structure of Rat Tail Tendon. Connective Tissue Research, 1985. 14(1): p. 9-20.
30. Bruneau, A., et al., Preparation of rat tail tendons for biomechanical and mechanobiological studies. J Vis Exp, 2010. 41.
31. Rajan, N., et al., Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nature protocols, 2006. 1(6): p. 2753.
32. Robinson, P.S., T.F. Huang, and E. Kazam, Influence of decorin and biglycan on mechanical properties of multiple tendons in knockout mice. J. Biomech. Eng., 2005. 127: p. 181-185.
33. Thorpe, C.T., et al., The role of the non‐collagenous matrix in tendon function. International journal of experimental pathology, 2013. 94(4): p. 248-259.
34. Fletcher, J.R., S.P. Esau, and B.R. MacIntosh, Changes in tendon stiffness and running economy in highly
trained distance runners. Eur J Appl Physiol, 2010. 110: p. 1037-1046.
35. Newell, N., et al., Biomechanics of the human intervertebral disc: A review of testingtechniques and results. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 69: p. 420-434.
36. Chen, M.-H., et al., Low-intensity pulsed ultrasound stimulates matrix metabolism of human annulus fibrosus cells mediated by transforming growth factor β1 and extracellular signal-regulated kinase pathway. Connective Tissue Research, 2015. 56: p. 219-227.
37. Attia, M., J.P. Santerre, and R.A. Kandel, The response of annulus fibrosus cell to fibronectin-coated nanofibrous
polyurethane-anionic dihydroxyoligomer scaffolds. Biomaterial, 2011. 32: p. 450-460.
38. Turner, K.G., et al., Modulation of annulus fibrosus cell alignment and function on oriented nanofibrous polyurethane scaffolds under tension. The Spine Journal, 2014. 14: p. 424-434.
39. Wang, H.-C., et al., Cell orientation determines the alignment of cell-producedcollagenous matrix. Journal of Biomechanics, 2003. 36: p. 97-102.
40. Javelaud, D. and A. Mauviel, Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-b: implications for carcinogenesis. Oncogene, 2005. 24: p. 5742-5750.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57772-
dc.description.abstract目的:研究超音波刺激下之運動中鼠尾肌腱纖維束的黏彈性質變化以及牛尾椎間盤纖維環細胞之力學性質變化。背景簡介:本研究分為兩部分。第一部份:治療性超音波之效應可分為熱效應及非熱效應,廣泛在臨床使用與研究,相關研究多為針對超音波對軟組織修復之影響。本研究探討超音波的非熱效應如何造成軟組織機械性質的立即性改變。第二部份:椎間盤為位於脊椎椎體間的軟骨組織,讓脊椎擁有活動度,而椎間盤的突出與退化可能會造成嚴重的疼痛。更接近真實組織的培養的椎間盤組織,可能是解決此問題的新契機。但是,椎間盤組織的培養具相當難度,因為其中纖維環細胞結構具高度方向性,且以特定形式排列。微構形纖連蛋白塗層可控制細胞的形狀、使之排列有方向性。微構形纖連蛋白塗層可以控制纖維環細胞的形狀,使其生長更具方向性,而低強度脈衝超音波已被證實可使纖維環細胞分泌之第一型膠原蛋白增加。本研究探討超音波刺激下是否影響纖維環細胞之力學性質變化以及超音波在不同微構形的纖連蛋白塗層上,對細胞型態之影響。材料與方法:第一部份:此研究使用年齡四個月之SD品系大鼠鼠尾肌腱纖維束。肌腱纖維束以夾具固定在拉伸測試機上,進行循環應力鬆弛測試與循環潛變測試,以此模擬並評估鼠尾的運動狀態,並同時接受超音波刺激。循環測試後,會在試樣上進行拉伸測試。蒐集拉伸測試中的破壞應力與應變、循環應力鬆弛測試的應力鬆弛量、循環潛變測試潛變量等數據進行分析。以標準線性固體模型之麥克斯威爾模型分別擬合動態與靜態之鬆弛與潛變測試,得到楊式係數(E1、E2)與其他各項係數,黏滯係數(η)和時間常數(τ)。實驗使用之超音波為強度 Ispta200mW/cm2, 頻率3MHz。第二部份:纖維環細胞從牛尾椎間盤中取出,培養在上有無微構形或直線微構形纖連蛋白塗層的聚二甲基矽氧烷(PDMS)薄膜上。纖維環細胞培養皿放在 MIGO II 載台內進行超音波刺激,載台連接超音波系統。此研究使用之超音波為頻率1MHz,工作週期20%,強度依不同實驗分為Ispta3.25mW/cm2與Ispta0.79mW/cm2兩種。在無微構形塗層實驗,培養後會進行力學測試或螢光染色攝影,分析拉伸試驗中力與位移變化的線性區間,以線性回歸計算出試樣的楊氏模數;在直線微構形塗層實驗,培養後只進行螢光染色攝影。
結果與結論:第一部份:超音波刺激可能造成大鼠尾巴肌腱束黏彈性質的些微變化,黏彈性質的變化造成應力鬆弛量的降低及循環潛變後的破壞應力與應變上升;麥克斯威爾模型模擬出的係數,組間無顯著差異。可能是因為超音波造成微纖維的相互之間的位移影響蛋白多醣的連結,進而影響黏彈性反應,但並沒有顯著的影響其 材料性質。循環負載狀態中的肌腱鬆弛量較低,可能擁有較高的剛性進而有較高的動作效率。第二部份:(一)使用無微構形纖連蛋白塗層培養纖維環細胞,超音波刺激可刺激第一型膠原蛋白的產量顯著增加,高亮度之影像面積差異顯著 (p=0.01*),但第一型膠原蛋白所佔面積比例顯著較控制組少(p=0.0001*),顯示其分佈並不平均,在本實驗中尚不足以影響纖維環細胞的力學性質。(二)使用直線微構形纖連蛋白塗層培養纖維環細胞,超音波刺激可讓纖維環細胞顯著產生更多的第一型膠原蛋白,高亮度之影像面積差異顯著(p=0.0003*),所佔面積比 例亦顯著增加(p=0.0003*);肌動蛋白所佔面積比例亦顯著增加(p=0.039*);細胞之間以膠原蛋白與肌動蛋白互相連結的狀態增加。超音波使得纖維環細胞分泌膠原蛋白與肌動蛋白等基質之速度顯著增加,也讓細胞之間更早以基質相互連結。
zh_TW
dc.description.abstractObjective: To investigate the effect of ultrasound stimulation on viscoelastic properties of exercising rat-tail tendon and mechanical property of disc annulus fibrosus cell culture. Summary of background data: This research includes two different parts. Part 1. There are thermal effects and non-thermal effects in therapeutic ultrasound, which are widely used and studied in clinical therapy. Most of the research focus on the effect of ultrasound on soft tissue recovery. This study aims to verify how ultrasound non-thermal effects instantly affect the mechanical properties of soft tissues. Part 2. Intervertebral disc is a cartilaginous structure between two spinal vertebral bodies, plays an important role in mobility, disc herniation and degeneration may cause intense pain. Engineered disc tissue is more similar to real tissue, seemed to be a new possible solution. It is difficult to culture disc tissue because in which annulus fibrosus cell (AF cell) is highly directional in a specific pattern. Micro-patterned fibronectin coating can control the shape of AF cell, making it more directional, and low-intensity pulsed ultrasound stimulation (LIPUS) has been confirmed to increase collagen secretion in AF cell culture. This study aims to investigate the effect of ultrasound stimulation on mechanical property of AF cell culture and the ultrasound effect on cell morphology on different micro-patterned coating. Methods: Part 1. 4-month-old SD rats tail tendon fascicles were prepared for testing. The tendon fascicles were fixed with clamps on tensile test machine. Cyclic stress relaxation test and cyclic creep test were conducted to simulate and evaluate the exercising status of tendon fascicles which was simultaneously stimulated by ultrasound. After the tests, tensile tests were conducted on samples. The data from mechanical tests, failure stress and failure strain in tensile test, stress relaxation in cyclic stress relaxation test and strain change in cyclic creep test were collected and analyzed. Standard linear solid models in Maxwell representation were used to find viscoelastic parameters of tendon fascicles, which include Young’s modulus (E1, E2), viscosity (η) and time constant (τ). Ultrasound used in this study was ISPTA 200 mW/cm^2 and 3 MHz. Part 2. Annulus fibrosus cells (AF cell) were extracted from ox tail disc tissue and cultured on PDMS membrane, which was coated with non-patterned or straight micro-patterned fibronectin. AF cells were stimulated by LIPUS in MIGO II chamber which connected to the ultrasound system. Ultrasound used in this study was 1MHz, duty cycle 20%, Ispta 3.25mW/cm2 and Ispta 0.79 mW/cm2. In non-patterned coating experiments, after culture, tensile test or fluorescent confocal microscopy were conducted. Regression was used in linear region of force-strain data during tensile test to find out the Young’s modulus of samples. In straight micro-patterned coating experiments, only fluorescent confocal microscopy were conducted. Result and Conclusion: Part 1: Ultrasound stimulation may slightly change the viscoelastic behavior of tendon fascicles. The change of viscoelastic properties reduced the relaxed stress, and increase failure stress and failure strain after cyclic creep test. It is probably because ultrasound makes microfibers mutually move, thus affecting proteoglycan bridge between microfibers in turn impact on viscoelasticity, but does not affect material property. Tendon fascicle in cyclic loading with less stress relaxation may have higher stiffness, which improve the efficiency of movement. Part 2: (1) On non-patterned coating, ultrasound stimulates AF cell to secrete significantly more collagen I. Collagen I area with high red value is significantly more in experimental group than in control group (p=0.01*), but area portion is significantly lower (p=0.0001*), which shows it is unevenly distributed. The effect was not enough to change mechanical property. (2) On straight micro-patterned coating, ultrasound stimulates AF cell to secrete significantly more collagen I and actin. Collagen I area with high red value is significantly more in experimental group than in control group (p=0.0003*), area portion is also significantly higher (p=0.0003*). Actin area portion is significantly higher in experimental group than in control group (p=0.039*). Ultrasound makes AF cells secrete more extracellular matrix such as collagen I and actin at faster speed, also connected with each other with extracellular matrix earlier. Not only makes cultured AF cell growing faster, but being closer to real tissue.en
dc.description.provenanceMade available in DSpace on 2021-06-16T07:02:46Z (GMT). No. of bitstreams: 1
U0001-1707202011024400.pdf: 28333260 bytes, checksum: b593612d824ba900c1604f75fdb292b6 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents論文口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
目錄 VIII
圖目錄 XIV
表目錄 XVII
第一章 總緒論 1
1.1. 論文架構介紹 1
1.2. 醫療用超音波簡介 1
1.2.1. 超音波生物物理 2
1.2.1.1. 超音波生物波型種類 2
1.2.1.2. 聲傳播速度、阻抗與衰減 3
1.2.2. 超音波熱效應與非熱效應 4
1.2.2.1. 超音波微流 4
1.2.2.2. 超音波熱效應與非熱效應 4
1.2.3. 超音波在醫療上的應用 5
第二章 第一部分緒論 6
2.1. 肌腱的微結構 6
2.2. 肌腱的力學研究 7
2.2.1. 人體肌腱的生物力學 8
2.3. 肌腱模型模擬 9
2.4. 非膠原蛋白基質與肌腱束機械性質之關係 10
2.5. 大鼠鼠尾肌腱 11
2.6. 實驗目的與假說 12
第三章 第一部分材料與方法 12
3.1. 研究方法介紹 12
3.2. 實驗程序 13
3.3. 實驗儀器 13
3.3.1. 拉伸測試機台(Bose-Electroforce 5500) 13
3.3.2. 波型產生器(Tektronix AFG 1000) 14
3.3.3. 電功率放大器(E I 210L) 14
3.3.4. 超音波探頭 14
3.3.5. 超音波聲功率計 15
3.3.6. 水聽計(Onda HNC-1000) 15
3.3.7. 超音波發射接收器(Olympus 5072PR) 16
3.3.8. 數位儲存示波器(TBS 1052B-EDU) 16
3.4. 實驗流程 16
3.4.1. 試樣準備 16
3.4.2. 鼠尾肌腱抽取 16
3.4.3. 鼠尾肌腱束截面積量測 17
3.4.4. 實驗環境架設 18
3.4.4.1. 超音波能量計算 19
3.4.5. 力學測試 21
3.5. 資料分析 21
3.5.1. 實驗數據分析流程 22
3.5.2. 模型模擬分析 23
3.5.2.1. 麥克斯威爾表示法(Maxwell Representation) 24
3.5.3. 石蠟包埋切片染色分析 25
第四章 第一部分實驗結果 25
4.1. 肌腱實驗參數量測 25
4.1.1. 超音波刺激能量 25
4.1.2. 超音波刺激能量 25
4.2. 循環負載測試結果 26
4.2.1. 循環應力鬆弛測試結果 26
4.2.1.1. 拉伸測試結果 26
4.2.1.2. 循環應力鬆弛分析 27
4.2.1.3. 標準線性固體模型-麥克斯威爾表示法分析 28
4.2.2. 循環潛變測試結果 30
4.2.2.1. 拉伸測試結果 30
4.2.2.2. 循環潛變應變增加量分析 31
4.2.2.3. 標準線性固體模型-麥克斯威爾表示法分析 32
4.3. 石蠟切片染色結果 34
4.3.1. 循環應力鬆弛測試後之試樣 34
4.3.2. 循環潛變測試後之試樣 35
第五章 第一部分討論與結論 36
5.1. 實驗參數量測 36
5.1.1. 超音波刺激能量 36
5.1.2. 鼠尾試樣 36
5.2. 實驗結果討論 37
5.2.1. 破壞應力、應變、曲線分析結果 37
5.2.2. 標準線性固體模型-麥克斯威爾表示法分析結果 37
5.2.3. 石蠟切片染色結果 37
5.3. 總結討論 38
5.4. 實驗限制 40
5.4.1. 試樣製備與截面積量測 40
5.4.2. 力學測試與夾治具 40
5.4.3. 超音波刺激 40
5.5. 結論 41
5.6. 未來展望 41
第六章 第二部分緒論 42
6.1. 椎間盤與纖維環介紹 42
6.1.1. 椎間盤構造與功能介紹 42
6.1.2. 椎間盤纖維環介紹 43
6.1.3. 椎間盤纖維環重要性 43
6.2. 纖維環細胞培養 44
6.2.1. 纖維環細胞培養 44
6.2.2. 纖連蛋白塗層(Fibronectin Coating) 44
6.3. 超音波對纖維環細胞培養之影響 45
6.3.1. 低強度脈衝超音波(LIPUS) 45
6.3.2. 低強度脈衝超音波對纖維環細胞之影響 45
6.4. 實驗目的與假說 46
第七章 第二部分材料與方法 47
7.1. 研究方法介紹 47
7.2. 實驗程序 47
7.2.1. 無微構形塗層實驗 47
7.2.2. 直線微構形塗層實驗 48
7.3. 實驗儀器 49
7.3.1. 超音波刺激系統 49
7.3.1.1. STV-EVM超音波訊號產生器 49
7.3.1.2. 超音波探頭 49
7.3.2. 超音波刺激載台MIGO II 50
7.3.2.1. 設計原理與目的 50
7.3.2.2. 超音波傳遞模式 50
7.3.2.3. 空間能量場分佈 51
7.4. 實驗流程 52
7.4.1. 纖維環細胞取得 52
7.4.2. 製作纖連蛋白塗層 52
7.4.2.1. 前置作業(微構形塗層) 52
7.4.2.2. 製作纖連蛋白塗層 52
7.4.3. 纖維環細胞培養 54
7.4.4. 超音波刺激實驗 55
7.4.4.1. 超音波能量計算 55
7.4.4.2. 實驗架設 57
7.4.5. 力學性質測試 57
7.4.6. 螢光染色過程 58
第八章 第二部分實驗結果 59
8.1. 無微構形塗層實驗 59
8.1.1. 力學測試結果 59
8.1.2. 螢光染色結果 61
8.1.2.1. 第一型膠原蛋白(Collagen I) 61
8.1.2.2. 肌動蛋白(Actin) 64
8.1.2.3. 細胞核(Nucleus) 66
8.1.2.4. 疊圖後結果(Overlay) 66
8.2. 直線微構形塗層實驗 67
8.2.1.1. 第一型膠原蛋白(Collagen I) 67
8.2.1.2. 肌動蛋白(Actin) 70
8.2.1.3. 細胞核(Nucleus) 72
8.2.1.4. 疊圖後結果(Overlay) 72
第九章 第二部分討論與結論 73
9.1. 實驗參數 73
9.1.1. 超音波刺激能量 73
9.1.2. 纖連蛋白塗層 73
9.1.3. 力學測試 73
9.2. 實驗結果討論 73
9.2.1. 無微構形塗層實驗力學測試與螢光染色分析結果討論 73
9.2.2. 直線微構形塗層實驗螢光染色分析結果討論 74
9.3. 總結討論 74
9.4. 實驗限制 75
9.4.1. 纖連蛋白塗層 75
9.4.2. 超音波刺激能量 75
9.4.3. 力學測試 75
9.5. 結論 76
9.6. 未來展望 76
參考文獻 77
dc.language.isozh-TW
dc.subject纖維環細胞培養zh_TW
dc.subject肌腱纖維束zh_TW
dc.subject超音波刺激zh_TW
dc.subject肌腱生物力學zh_TW
dc.subject椎間盤纖維環zh_TW
dc.subject超音波治療zh_TW
dc.subject微構形塗層zh_TW
dc.subjectTendon biomechanicsen
dc.subjectMicro-patterned coatingen
dc.subjectAnnulus fibrosus cell cultureen
dc.subjectUltrasound therapyen
dc.subjectUltrasound stimulationen
dc.subjectTendon fasciclesen
dc.title超音波刺激對運動中鼠尾肌腱纖維束黏彈性質與椎間盤纖維環細胞培養的力學性質之影響
zh_TW
dc.titleEffects of Ultrasound Stimulation on Mechanical Properties of Exercising Rat Tail Tendon Fascicles and Annulus Fibrosus Cell Cultureen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee施博仁(Po-Jen Shih),林哲宇(Che-Yu Lin)
dc.subject.keyword肌腱纖維束,肌腱生物力學,超音波刺激,超音波治療,椎間盤纖維環,纖維環細胞培養,微構形塗層,zh_TW
dc.subject.keywordTendon fascicles,Tendon biomechanics,Ultrasound stimulation,Ultrasound therapy,Annulus fibrosus cell culture,Micro-patterned coating,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202001588
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-1707202011024400.pdf
  未授權公開取用
27.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved