請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林永松 | |
| dc.contributor.author | Meng-Chi Hsu | en |
| dc.contributor.author | 徐孟祺 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:55:27Z | - |
| dc.date.available | 2025-08-11 | |
| dc.date.copyright | 2020-08-21 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | [1] S. Analytics, '無線家庭:評估全球家庭Wi-Fi設備市場規模,' CEDA導讀, http://www.cedachina.org/index.php/Home/News/info/d/8956.html, 2019-08-09. [2] '10th Annual Cisco Visual Networking Index (VNI) Mobile Forecast Projects 70 Percent of Global Population Will Be Mobile Users,' Cisco News Release, https://newsroom.cisco.com/press-release-content?articleId=1741352, February 03,2016. [3] D. L'opez-P'erez, A. Garcia-Rodriguez, L. Galati0Giordano, M. Kasslin and K. Doppler, 'IEEE 802.11 be Extremely High Throughout : Tha Next Generation of WiFi Techonology Beyond 802.11ax,' IEEE Commmunication Magazine, vol. 57, no. 9, pp. 113-119, 24 September 2019. [4] M. C. a. B. B. Toni Adame, 'Time-Sensitive Networking in IEEE 802.11be:On the Way to Low-latency WiFi 7,' arXiv:1912.06086 [cs.NI], Barcelona, Spain, 12 Dec 2019. [5] F. Chen, H. Zhai and Y. Fang, 'An Opportunistic MAC in Multichannel Multiradio Wireless Ad Hoc Networks,' IEEE Wireless Communications and Networking Conference, pp. pp.1685-1690, March 31 2008-April 3 2008.. [6] M. S.Gast, 802.11 Wireless Network: the definitive guide, Sebastopol, CA: O'Relly Media, April 2005. [7] 簡榮宏、廖冠雄, 無線區域網路, 全華科技圖書, 2007. [8] 粘添壽, '電腦網路與連結技術:第十五章 Wireless LAN 網路,' http://www.tsnien.idv.tw/Network_WebBook/chap15/15-8%20IEEE%20802_11%20%E5%BB%B6%E4%BC%B8%E8%A6%8F%E6%A0%BC.html. [9] Google, '5g spectrum,' https://www.routerguide.org/wp-content/uploads/2018/11/5ghz-wifi-channel.png. [10] 'IEEE 802.11n-2009,' Wikipedia, https://en.wikipedia.org/wiki/IEEE_802.11n-2009. [11] D. N. Resource, '802.11n,' http://www.rhyshaden.com/802_11n.htm. [12] R. S. Eldad Perahia, Next Generation Wireless LANs-802.11n and 802.11AC, New York: Cambridge University Press, 2013. [13] Tenda騰達, 'MU-MIMO技術是什麼 ?,' 科技, https://kknews.cc/tech/kambbvq.html, 2017-09-12. [14] E. Au, 'IEEE 802.11be: Extremely High Throughput [Standards],' IEEE Vehicular Technology Magazine , vol. 14, no. 3, pp. 138-140, 19 August 2019. [15] Y. Cui, Y. Xu, X. Sha, R. Xu and Z. Ding, 'A novel multi-radio packet scheduling algorithm for real-time traffic on generic link layer,' 15th Asia-Pacific Conference on Communications, pp. 122-125, Oct. 2009. [16] T. Høiland-Jørgensen, M. Kazior, D. Täht and P. H. a. A. Brunstrom, 'Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi,' arXiv:1703.00064v2 [cs.NI] , Karlstad University, 6 Mar 2017. [17] R. G. D. Bertsekas, Data Networks, Prentice Hall, 1992. [18] C. Kwon, 'Julia Programming for Operations Research,' University of South Florida., CreateSpace Independent Publishing Platform, 2016, May 29, 2016, p. chap 9 . [19] M.-C. TSAI, F. Y.-S. LIN and Y.-F. WEN, 'Lagrangian-Relaxation-Based Self-Repairing Mechanism for Wi-Fi Networks,' IEEE Access, vol. 7, p. 15868, February 12, 2019.. [20] W. Koehrsen, 'The Poisson Distribution and Poisson Process Explained,' Towards Data Science Inc., https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459, Jan 21, 2019. [21] Y. Yih, Handbook of Healthcare Delivery Systems chap.16, Boca Raton, FL ,USA: CRC Press Taylor Francis Group, 2011. [22] F. Anwar, M. H. Masud, B. U. I. Khan*, R. F. Olanrewaju and S. A. Latif, 'Analysis of Packet Reordering Delay for Bandwidth Aggregation in Heterogeneous Wireless Networks,' IPASJ International Journal of Information Technology, vol. 6, no. 7, July 2018. [23] T. Elkourdi, A. Chincholi, T. Le and A. Demir, 'Cross-Layer Optimization for Opportunistic Multi-MAC Aggregation,' in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2-5 June 2013. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57639 | - |
| dc.description.abstract | 為了處理更高密度,高帶寬高吞吐量,低延遲和可靠性的新應用,在激增的無線區域網路環境,IEEE於2018年起草IEEE802.11be(Extreme High Throughout),期望於2024年成工業標準,各IC廠家也計畫於2022年提供第一代晶片。在802.11be裡,媒體存取控制(MAC)層引入多鏈路(Multi-link)技術, 多個Wi-Fi設備進行多鏈路數據聚合,透過跨多AP分配數據封包,以提高峰值吞吐量並減少延遲,增加信道和頻譜使用量(2.4 / 5/6 GHz)和增強傳輸數據封包的可靠性。但該應用程序會產生數據包負載平衡和重新排序平衡的問題。 本論文針對此關鍵問題,利用拉格朗日鬆弛法,和MM1等候理論模型來分析數據包排隊延遲,並開發一個重新排序模型,以了解重新排序平衡問題的影響,分析總體延遲而提出而提出多鏈路流量(Multi-link) 的最佳到達速率比率,減少總延遲,也提出最大到達率,以達到最大化鏈路流量(Multi-Link)系統吞吐量。 | zh_TW |
| dc.description.abstract | In order to handle new applications with higher density, high bandwidth, high throughput, low latency and reliability, in the rapidly increasing wireless local area network environment, IEEE drafted IEEE802.11be (Extreme High Throughout) in 2018 and expects to become an industry in 2024 Standards. IC manufacturers also plan to provide the first generation of chips in 2022. In 802.11be, the media access control (MAC) layer introduces Multi-link technology. Multiple Wi-Fi devices perform multi-link data aggregation and distribute data packets across multiple APs to improve peak throughput, reduce the delay, increase the channel and spectrum usage (2.4 / 5/6 GHz) and enhance the reliability of transmitting data packets. However, the application will have packet load balancing and reordering balancing problems. In response to this key issue, this paper uses Lagrangian minimization and MM1 queuing models to analyze the packet queuing delay, and develops a resequencing model, to understand the impact of the resequencing balance problem, analyzes the overall delay and proposes multi-link traffic (Multi -link) to reduce the total delay, and also propose the maximum arrival rate to maximize the throughput of the Multi-Link system. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:55:27Z (GMT). No. of bitstreams: 1 U0001-1807202001160300.pdf: 4530975 bytes, checksum: 8546e7bf53da366337f9f0fc0c1cee9b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 iii 中文摘要 iv THESIS ABSTRACT v 目錄 vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 4 1.3 Thesis Structure 5 Chapter 2 Literature discussion 6 2.1 802.11b 6 2.2 802.11a 7 2.3 802.11g 9 2.4 802.11n – Wi-Fi 4 10 2.4.1 Multiple-input multiple-output (MIMO) 10 2.4.2 Support 40MHz bandwidth 11 2.4.3 Frame Aggregation 11 2.4.4 Modulation 12 2.5 802.11ac – Wi-Fi 5 12 2.5.1 Support 8 spatial streams 80MHz bandwidth, 13 2.5.2 MUMIMO 13 2.5.3 Modulation 14 2.6 802.11ax –WI-Fi 6 (MAX Wi-Fi) 15 2.6.1 Modulation 15 2.6.2 Multi-user MIMO (MU-MIMO): 17 2.6.3 Multi-user OFDMA (Orthogonal Frequency Division Multiple Access) 18 2.6.4 Multi-User up link operation 19 2.6.5 Comparison of ac and ax 20 2.7 802.11BE 21 2.7.1 Timeline 21 2.7.2 320M BW 22 2.7.3 Spatial Stream 23 2.7.4 Modulation 23 2.7.5 Multi-AP coordination 23 2.7.6 Multi-Link Operation - (MLO) 24 2.8 Summary 25 Chapter 3 Problem Formulation 26 3.1 Problem Description 26 3.2 Mathematical Packet Queuing Latency Model 27 3.2.1 Data Rate 27 3.3 MM1 Packet Queuing and Resequencing Latency Model 30 3.3.1 M/M/s 30 3.3.2 Average Packet Queuing Latency 31 3.3.3 Input arrival and output service rate 35 3.3.4 Average Packet Queuing Latency 36 3.3.5 Average Packet Resequencing Latency 38 Chapter 4 Simulation and Analysis 45 4.1 Simulation setup 45 4.1.1 Estimated max channel rate (µ) in 802.11BE. 45 4.1.2 Find input and output rate (λ, µ) 45 4.1.3 Decide the network µ allocate to the two links 46 4.2 Lagrangian numerical and Analytical Queuing Latency Simulation 47 4.2.1 Analytical Calculation 47 4.2.2 Lagrangian Numerical simulation 48 4.3 MM1 Packet Queuing and Resequencing Latency Simulation 53 4.3.1 Decide the Packet Window Size 53 4.3.2 Simulation with Various μ ratio 55 4.4 Analysis and observation 61 4.4.1 Average packet queue delay 61 4.4.2 Average Resequencing forwarding delay 63 4.4.3 Total delay 65 4.4.4 Enhance the input arrival rate 66 Chapter 5 Conclusion 68 5.1 Summary 68 5.2 Future work 69 Bibliography 70 List of Figures FIGURE 1: 全球正在使用中的家用WI-FI設備 [1] 2 FIGURE 2: THE EVOLUTION OF WI-FI 3 FIGURE 3: THE LEGACY FDM AND OFDM 8 FIGURE 4: SUBCARRIERS SYSTEM OF OFDM SIGNALS AFTER FFT 8 FIGURE 5 : 5G SPECTRUM (FCC) [9] 9 FIGURE 6 : 802.11 2.4G BAND 10 FIGURE 7 : MIMO 11 FIGURE 8 : MU MOMO [13] 14 FIGURE 9 : COMPARISON OF MODULATION AND SUBCARRIER FOR 11AX AND 11AC 16 FIGURE 10 : OFDMA 18 FIGURE 11 : OFDMA USER ALLOCATION 19 FIGURE 12 : MU UPLINK OPERATION 20 FIGURE 13 : 802.11BE TIME LINE 21 FIGURE 14 : 6G BAND ALLOCATION 22 FIGURE 15 : MULTI-AP COORDINATION 23 FIGURE 16 : MULTI-LINK OPERATION IN ORDER 24 FIGURE 17 : MULTI-LINK OPERATION OUT OF ORDER 24 FIGURE 18 : MLO SYNCHRONOUS OPERATION 25 FIGURE 19 : MLO ASYNCHRONOUS OPERATION 25 FIGURE 20 : MLO ARCHITECTURE 27 FIGURE 21 : AMPDU, AMSDU, PPDU 28 FIGURE 22 : 802.11 CSMA/CA DCF OPERATIONS 29 FIGURE 23 : HE MU PPDU FORMAT 29 FIGURE 24 : PARALLEL MM1 QUEUING SYSTEM 30 FIGURE 25 : OD PAIR TOPOLOGY 33 FIGURE 26 : PACKET QUEUING MM1 FLOW DIAGRAM 37 FIGURE 27 : THE ORDER ISSUE IN MLO SYSTEM 38 FIGURE 28 : RESEQUENCING FLOW DIAGRAM 41 FIGURE 29 : THE THROUGHPUT AND UTILIZATION V.S. THE NUMBERS OF MPDU 46 FIGURE 30 : PACKET QUEUING AT ITERATION COUNTS=10, 50, 500, 1000, 2000 AND 3000 52 FIGURE 31: MPDU IN ONE AMPDU COUNTS VS DELAY 55 FIGURE 32: LR N RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH CONSTANT SERVICE RATE 58 FIGURE 33: LR, RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH RATIO OF TWO SERVICE AGENTS 61 FIGURE 34: ENHANCE THE INPUT RATES 67 List of Tables TABLE 1: 802.11A MODULATION TABLE 7 TABLE 2: 802.11N MCS AND RATE TABLE 12 TABLE 3: 802.11AC MCS AND RATE TABLE 15 TABLE 4: 802.11AC MCS AND RATE TABLE 17 TABLE 5: COMPARISON BETWEEN 802.11AC AND 802.11AX 20 TABLE 6: 802.11 PHY STANDARDS 25 TABLE 7: RESEQUENCING CONTROL TABLE 39 TABLE 8: RESEQUENCING MANAGER OPERATION 43 TABLE 9: RESEQUENCING TABLE 44 TABLE 10: CALCULATION FOR THE 802.11 RATES AND UTILIZATION 46 TABLE 11: SUMMARY TABLE FOR BELOW 4 SIMULATION. 54 TABLE 12: AVERAGE PACKET QUEUEING DELAY. 61 TABLE 13: SIMULATED AND ANALYTICAL RESULT RATIO 63 TABLE 14: RESEQUENCING FORWARDING DELAY 64 TABLE 15: TOTAL DELAY 65 | |
| dc.language.iso | en | |
| dc.subject | 延遲時間 | zh_TW |
| dc.subject | 等候理論 | zh_TW |
| dc.subject | 拉格朗日鬆弛法 | zh_TW |
| dc.subject | 無線區域網路 | zh_TW |
| dc.subject | 多鏈路操作系統 | zh_TW |
| dc.subject | 重新排序 | zh_TW |
| dc.subject | Wi-Fi | en |
| dc.subject | Lagrangian Relaxation | en |
| dc.subject | Resequencing | en |
| dc.subject | Multi-Link Operation | en |
| dc.subject | Latency | en |
| dc.subject | Queuing theory | en |
| dc.title | IEEE802.11be多鏈路操作系統上的平均數據封包和重排序延遲評估 | zh_TW |
| dc.title | Evaluations of the Average Packet and Resequencing Latency on IEEE802.11be Multi-Link Operation Systems | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳家麟,呂俊賢,孔令傑 | |
| dc.subject.keyword | 無線區域網路,拉格朗日鬆弛法,重新排序,多鏈路操作系統,延遲時間,等候理論, | zh_TW |
| dc.subject.keyword | Wi-Fi,Lagrangian Relaxation,Resequencing,Multi-Link Operation,Latency,Queuing theory, | en |
| dc.relation.page | 72 | |
| dc.identifier.doi | 10.6342/NTU202001612 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理組 | zh_TW |
| 顯示於系所單位: | 資訊管理組 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1807202001160300.pdf 未授權公開取用 | 4.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
