Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 資訊管理組
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57639
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林永松
dc.contributor.authorMeng-Chi Hsuen
dc.contributor.author徐孟祺zh_TW
dc.date.accessioned2021-06-16T06:55:27Z-
dc.date.available2025-08-11
dc.date.copyright2020-08-21
dc.date.issued2020
dc.date.submitted2020-08-11
dc.identifier.citation
[1] S. Analytics, '無線家庭:評估全球家庭Wi-Fi設備市場規模,' CEDA導讀, http://www.cedachina.org/index.php/Home/News/info/d/8956.html, 2019-08-09.
[2] '10th Annual Cisco Visual Networking Index (VNI) Mobile Forecast Projects 70 Percent of Global Population Will Be Mobile Users,' Cisco News Release, https://newsroom.cisco.com/press-release-content?articleId=1741352, February 03,2016.
[3] D. L'opez-P'erez, A. Garcia-Rodriguez, L. Galati0Giordano, M. Kasslin and K. Doppler, 'IEEE 802.11 be Extremely High Throughout : Tha Next Generation of WiFi Techonology Beyond 802.11ax,' IEEE Commmunication Magazine, vol. 57, no. 9, pp. 113-119, 24 September 2019.
[4] M. C. a. B. B. Toni Adame, 'Time-Sensitive Networking in IEEE 802.11be:On the Way to Low-latency WiFi 7,' arXiv:1912.06086 [cs.NI], Barcelona, Spain, 12 Dec 2019.
[5] F. Chen, H. Zhai and Y. Fang, 'An Opportunistic MAC in Multichannel Multiradio Wireless Ad Hoc Networks,' IEEE Wireless Communications and Networking Conference, pp. pp.1685-1690, March 31 2008-April 3 2008..
[6] M. S.Gast, 802.11 Wireless Network: the definitive guide, Sebastopol, CA: O'Relly Media, April 2005.
[7] 簡榮宏、廖冠雄, 無線區域網路, 全華科技圖書, 2007.
[8] 粘添壽, '電腦網路與連結技術:第十五章 Wireless LAN 網路,' http://www.tsnien.idv.tw/Network_WebBook/chap15/15-8%20IEEE%20802_11%20%E5%BB%B6%E4%BC%B8%E8%A6%8F%E6%A0%BC.html.
[9] Google, '5g spectrum,' https://www.routerguide.org/wp-content/uploads/2018/11/5ghz-wifi-channel.png.
[10] 'IEEE 802.11n-2009,' Wikipedia, https://en.wikipedia.org/wiki/IEEE_802.11n-2009.
[11] D. N. Resource, '802.11n,' http://www.rhyshaden.com/802_11n.htm.
[12] R. S. Eldad Perahia, Next Generation Wireless LANs-802.11n and 802.11AC, New York: Cambridge University Press, 2013.
[13] Tenda騰達, 'MU-MIMO技術是什麼 ?,' 科技, https://kknews.cc/tech/kambbvq.html, 2017-09-12.
[14] E. Au, 'IEEE 802.11be: Extremely High Throughput [Standards],' IEEE Vehicular Technology Magazine , vol. 14, no. 3, pp. 138-140, 19 August 2019.
[15] Y. Cui, Y. Xu, X. Sha, R. Xu and Z. Ding, 'A novel multi-radio packet scheduling algorithm for real-time traffic on generic link layer,' 15th Asia-Pacific Conference on Communications, pp. 122-125, Oct. 2009.
[16] T. Høiland-Jørgensen, M. Kazior, D. Täht and P. H. a. A. Brunstrom, 'Ending the Anomaly: Achieving Low Latency and Airtime Fairness in WiFi,' arXiv:1703.00064v2 [cs.NI] , Karlstad University, 6 Mar 2017.
[17] R. G. D. Bertsekas, Data Networks, Prentice Hall, 1992.
[18] C. Kwon, 'Julia Programming for Operations Research,' University of South Florida., CreateSpace Independent Publishing Platform, 2016, May 29, 2016, p. chap 9 .
[19] M.-C. TSAI, F. Y.-S. LIN and Y.-F. WEN, 'Lagrangian-Relaxation-Based Self-Repairing Mechanism for Wi-Fi Networks,' IEEE Access, vol. 7, p. 15868, February 12, 2019..
[20] W. Koehrsen, 'The Poisson Distribution and Poisson Process Explained,' Towards Data Science Inc., https://towardsdatascience.com/the-poisson-distribution-and-poisson-process-explained-4e2cb17d459, Jan 21, 2019.
[21] Y. Yih, Handbook of Healthcare Delivery Systems chap.16, Boca Raton, FL ,USA: CRC Press Taylor Francis Group, 2011.
[22] F. Anwar, M. H. Masud, B. U. I. Khan*, R. F. Olanrewaju and S. A. Latif, 'Analysis of Packet Reordering Delay for Bandwidth Aggregation in Heterogeneous Wireless Networks,' IPASJ International Journal of Information Technology, vol. 6, no. 7, July 2018.
[23] T. Elkourdi, A. Chincholi, T. Le and A. Demir, 'Cross-Layer Optimization for Opportunistic Multi-MAC Aggregation,' in 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), Dresden, Germany, 2-5 June 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57639-
dc.description.abstract為了處理更高密度,高帶寬高吞吐量,低延遲和可靠性的新應用,在激增的無線區域網路環境,IEEE於2018年起草IEEE802.11be(Extreme High Throughout),期望於2024年成工業標準,各IC廠家也計畫於2022年提供第一代晶片。在802.11be裡,媒體存取控制(MAC)層引入多鏈路(Multi-link)技術, 多個Wi-Fi設備進行多鏈路數據聚合,透過跨多AP分配數據封包,以提高峰值吞吐量並減少延遲,增加信道和頻譜使用量(2.4 / 5/6 GHz)和增強傳輸數據封包的可靠性。但該應用程序會產生數據包負載平衡和重新排序平衡的問題。
本論文針對此關鍵問題,利用拉格朗日鬆弛法,和MM1等候理論模型來分析數據包排隊延遲,並開發一個重新排序模型,以了解重新排序平衡問題的影響,分析總體延遲而提出而提出多鏈路流量(Multi-link) 的最佳到達速率比率,減少總延遲,也提出最大到達率,以達到最大化鏈路流量(Multi-Link)系統吞吐量。
zh_TW
dc.description.abstractIn order to handle new applications with higher density, high bandwidth, high throughput, low latency and reliability, in the rapidly increasing wireless local area network environment, IEEE drafted IEEE802.11be (Extreme High Throughout) in 2018 and expects to become an industry in 2024 Standards. IC manufacturers also plan to provide the first generation of chips in 2022. In 802.11be, the media access control (MAC) layer introduces Multi-link technology. Multiple Wi-Fi devices perform multi-link data aggregation and distribute data packets across multiple APs to improve peak throughput, reduce the delay, increase the channel and spectrum usage (2.4 / 5/6 GHz) and enhance the reliability of transmitting data packets. However, the application will have packet load balancing and reordering balancing problems.
In response to this key issue, this paper uses Lagrangian minimization and MM1 queuing models to analyze the packet queuing delay, and develops a resequencing model, to understand the impact of the resequencing balance problem, analyzes the overall delay and proposes multi-link traffic (Multi -link) to reduce the total delay, and also propose the maximum arrival rate to maximize the throughput of the Multi-Link system.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:55:27Z (GMT). No. of bitstreams: 1
U0001-1807202001160300.pdf: 4530975 bytes, checksum: 8546e7bf53da366337f9f0fc0c1cee9b (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
誌謝 iii
中文摘要 iv
THESIS ABSTRACT v
目錄 vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 4
1.3 Thesis Structure 5
Chapter 2 Literature discussion 6
2.1 802.11b 6
2.2 802.11a 7
2.3 802.11g 9
2.4 802.11n – Wi-Fi 4 10
2.4.1 Multiple-input multiple-output (MIMO) 10
2.4.2 Support 40MHz bandwidth 11
2.4.3 Frame Aggregation 11
2.4.4 Modulation 12
2.5 802.11ac – Wi-Fi 5 12
2.5.1 Support 8 spatial streams 80MHz bandwidth, 13
2.5.2 MUMIMO 13
2.5.3 Modulation 14
2.6 802.11ax –WI-Fi 6 (MAX Wi-Fi) 15
2.6.1 Modulation 15
2.6.2 Multi-user MIMO (MU-MIMO): 17
2.6.3 Multi-user OFDMA (Orthogonal Frequency Division Multiple Access) 18
2.6.4 Multi-User up link operation 19
2.6.5 Comparison of ac and ax 20
2.7 802.11BE 21
2.7.1 Timeline 21
2.7.2 320M BW 22
2.7.3 Spatial Stream 23
2.7.4 Modulation 23
2.7.5 Multi-AP coordination 23
2.7.6 Multi-Link Operation - (MLO) 24
2.8 Summary 25
Chapter 3 Problem Formulation 26
3.1 Problem Description 26
3.2 Mathematical Packet Queuing Latency Model 27
3.2.1 Data Rate 27
3.3 MM1 Packet Queuing and Resequencing Latency Model 30
3.3.1 M/M/s 30
3.3.2 Average Packet Queuing Latency 31
3.3.3 Input arrival and output service rate 35
3.3.4 Average Packet Queuing Latency 36
3.3.5 Average Packet Resequencing Latency 38
Chapter 4 Simulation and Analysis 45
4.1 Simulation setup 45
4.1.1 Estimated max channel rate (µ) in 802.11BE. 45
4.1.2 Find input and output rate (λ, µ) 45
4.1.3 Decide the network µ allocate to the two links 46
4.2 Lagrangian numerical and Analytical Queuing Latency Simulation 47
4.2.1 Analytical Calculation 47
4.2.2 Lagrangian Numerical simulation 48
4.3 MM1 Packet Queuing and Resequencing Latency Simulation 53
4.3.1 Decide the Packet Window Size 53
4.3.2 Simulation with Various μ ratio 55
4.4 Analysis and observation 61
4.4.1 Average packet queue delay 61
4.4.2 Average Resequencing forwarding delay 63
4.4.3 Total delay 65
4.4.4 Enhance the input arrival rate 66
Chapter 5 Conclusion 68
5.1 Summary 68
5.2 Future work 69
Bibliography 70

List of Figures
FIGURE 1: 全球正在使用中的家用WI-FI設備 [1] 2
FIGURE 2: THE EVOLUTION OF WI-FI 3
FIGURE 3: THE LEGACY FDM AND OFDM 8
FIGURE 4: SUBCARRIERS SYSTEM OF OFDM SIGNALS AFTER FFT 8
FIGURE 5 : 5G SPECTRUM (FCC) [9] 9
FIGURE 6 : 802.11 2.4G BAND 10
FIGURE 7 : MIMO 11
FIGURE 8 : MU MOMO [13] 14
FIGURE 9 : COMPARISON OF MODULATION AND SUBCARRIER FOR 11AX AND 11AC 16
FIGURE 10 : OFDMA 18
FIGURE 11 : OFDMA USER ALLOCATION 19
FIGURE 12 : MU UPLINK OPERATION 20
FIGURE 13 : 802.11BE TIME LINE 21
FIGURE 14 : 6G BAND ALLOCATION 22
FIGURE 15 : MULTI-AP COORDINATION 23
FIGURE 16 : MULTI-LINK OPERATION IN ORDER 24
FIGURE 17 : MULTI-LINK OPERATION OUT OF ORDER 24
FIGURE 18 : MLO SYNCHRONOUS OPERATION 25
FIGURE 19 : MLO ASYNCHRONOUS OPERATION 25
FIGURE 20 : MLO ARCHITECTURE 27
FIGURE 21 : AMPDU, AMSDU, PPDU 28
FIGURE 22 : 802.11 CSMA/CA DCF OPERATIONS 29
FIGURE 23 : HE MU PPDU FORMAT 29
FIGURE 24 : PARALLEL MM1 QUEUING SYSTEM 30
FIGURE 25 : OD PAIR TOPOLOGY 33
FIGURE 26 : PACKET QUEUING MM1 FLOW DIAGRAM 37
FIGURE 27 : THE ORDER ISSUE IN MLO SYSTEM 38
FIGURE 28 : RESEQUENCING FLOW DIAGRAM 41
FIGURE 29 : THE THROUGHPUT AND UTILIZATION V.S. THE NUMBERS OF MPDU 46
FIGURE 30 : PACKET QUEUING AT ITERATION COUNTS=10, 50, 500, 1000, 2000 AND 3000 52
FIGURE 31: MPDU IN ONE AMPDU COUNTS VS DELAY 55
FIGURE 32: LR N RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH CONSTANT SERVICE RATE 58
FIGURE 33: LR, RESEQUENCING AND TOTAL DELAY VS INPUT ARRIVAL SPLIT WITH RATIO OF TWO SERVICE AGENTS 61
FIGURE 34: ENHANCE THE INPUT RATES 67
List of Tables
TABLE 1: 802.11A MODULATION TABLE 7
TABLE 2: 802.11N MCS AND RATE TABLE 12
TABLE 3: 802.11AC MCS AND RATE TABLE 15
TABLE 4: 802.11AC MCS AND RATE TABLE 17
TABLE 5: COMPARISON BETWEEN 802.11AC AND 802.11AX 20
TABLE 6: 802.11 PHY STANDARDS 25
TABLE 7: RESEQUENCING CONTROL TABLE 39
TABLE 8: RESEQUENCING MANAGER OPERATION 43
TABLE 9: RESEQUENCING TABLE 44
TABLE 10: CALCULATION FOR THE 802.11 RATES AND UTILIZATION 46
TABLE 11: SUMMARY TABLE FOR BELOW 4 SIMULATION. 54
TABLE 12: AVERAGE PACKET QUEUEING DELAY. 61
TABLE 13: SIMULATED AND ANALYTICAL RESULT RATIO 63
TABLE 14: RESEQUENCING FORWARDING DELAY 64
TABLE 15: TOTAL DELAY 65
dc.language.isoen
dc.subject延遲時間zh_TW
dc.subject等候理論zh_TW
dc.subject拉格朗日鬆弛法zh_TW
dc.subject無線區域網路zh_TW
dc.subject多鏈路操作系統zh_TW
dc.subject重新排序zh_TW
dc.subjectWi-Fien
dc.subjectLagrangian Relaxationen
dc.subjectResequencingen
dc.subjectMulti-Link Operationen
dc.subjectLatencyen
dc.subjectQueuing theoryen
dc.titleIEEE802.11be多鏈路操作系統上的平均數據封包和重排序延遲評估
zh_TW
dc.titleEvaluations of the Average Packet and Resequencing Latency on IEEE802.11be Multi-Link Operation Systemsen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳家麟,呂俊賢,孔令傑
dc.subject.keyword無線區域網路,拉格朗日鬆弛法,重新排序,多鏈路操作系統,延遲時間,等候理論,zh_TW
dc.subject.keywordWi-Fi,Lagrangian Relaxation,Resequencing,Multi-Link Operation,Latency,Queuing theory,en
dc.relation.page72
dc.identifier.doi10.6342/NTU202001612
dc.rights.note有償授權
dc.date.accepted2020-08-11
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept資訊管理組zh_TW
顯示於系所單位:資訊管理組

文件中的檔案:
檔案 大小格式 
U0001-1807202001160300.pdf
  未授權公開取用
4.42 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved