Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57632
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘
dc.contributor.authorChia-Hsi Changen
dc.contributor.author張家熙zh_TW
dc.date.accessioned2021-06-16T06:55:05Z-
dc.date.available2017-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citation[1]S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Application of four-switch-based three-phase grid-connected inverter to connect renewable energy source to a generalized unbalance microgrid system,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1204–1215, Mar. 2013.
[2]T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated dc microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695–706, Feb. 2014.
[3]J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, and M. Castilla, “Hierarchical control of droop-controlled ac and dc microgids - a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158–172, Jan. 2011.
[4]C. Jin, P. Wang, J. Xiao, Y. Tang, and F. H. Choo, “Implementation of hierarchical control in dc microgrids,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4032–4042, Aug. 2014.
[5]X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for dc microgrid enable by solid-state transformer,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 954–965, Mar. 2014.
[6]K. T. Tan, P. L. So, Y. C. Chu, and M. Z. Q. Chen, “A flexible ac distribution system device for a microgrid,” IEEE Trans. Energy Convers, vol. 28, no. 3, pp. 601–610, Sep. 2013.
[7]I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Distributed operation of interlinked ac microgrids with dynamic active and reactive power tuning,” IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2188–2196, Sep./Oct. 2013.
[8]Y.-H. Liao, “A novel reduced switching losses bidirectional ac/dc converter PWM strategy with feedforward control for grid-tied microgrid systems,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1500–1513, Mar. 2014.
[9]W. Zhu, K Zhou, and M. Cheng, “A bidirectional high-frequency-link single-phase inverter: modulation, modeling, and control,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4049–4057, Aug. 2014.
[10]Y.-K. Lo, H.-J. Chiu, T.-P. Lee, I. Purnama, and J.-M. Wang, “Analysis and design of a photovoltaic system dc connected to the utility with a power factor corrector,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4354–4362, Nov. 2009.
[11]D. D. Lu and V. G. Agelidis, “Photovoltaic-battery-power dc bus system for common portable electronic devices,” IEEE Trans. Power Electron., vol. 24, no. 3, pp. 849–855, Mar. 2009.
[12]H.-Y. Tsai, T.-H. Hsia, and D. Chen, “A family of zero-voltage-transition bridgeless power-factor-correction circuits with a zero-current-switching auxiliary switch,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1848–1855, May 2011.
[13]B. Yang, W. Li, Y. Zhao, and X. He, “Design and analysis of a grid-connected photovoltaic power system,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 992–1000, Apr. 2010.
[14]D. V. Ghodke, S. E. S., K. Chatterjee, and B. G. Fernandes, “One-cycle-controlled bidirectional ac-to-dc converter with constant power factor,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1499–1510, May 2009.
[15]S. K. Mazumder, R. K. Burra, R. Huang, M. Tahir, and K. Acharya, “A universal grid-connected fuel-cell inverter for residential application,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3431–3447, Oct. 2010.
[16]L. Hang, S. Liu, G. Yan, B. Qu, and Z.-Y. Lu, “An improved deadbeat scheme with fuzzy controller for the grid-side three-phase PWM boost rectifier,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1184–1191, Apr. 2011.
[17]F. Chan and H. Calleja, “Reliability estimation of three single-phase topologies in grid-connected PV system,” IEEE Trans. Ind. Electron., vol. 58, no. 7, pp. 2683–2689, Jul. 2011.
[18]F. K. A. Lima, A. Luna, P. Rodriguez, E. H. Watanabe, and F. Blaabjerg, “Rotor voltage dynamics in the doubly fed induction generator during grid faults,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 118–130, Jan. 2010.
[19]M. Molinas, J. A. Suul, and T. Undeland, “Low voltage ride through of wind farms with cage generators: STATCOM versus SVC,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1104–1117, May 2008.
[20]Grid Code High and Extra High Voltage, E.ON Netz GmbH, Bayreuth, Germany, Apr. 2006. Available: http://www.eon-netz.com
[21]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications and Design, 3rd edition. John Wiley and Sons Inc., 2003.
[22]D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814–822, May 2003.
[23]C.-L. Chen, Y. Wang, J.-S. Lai, Y.-S. Lee, and D. Martin, “Design of parallel inverters for smooth mode transfer microgrid applications,” IEEE Trans. Power Electron., vol. 25, no. 1, pp. 6–15, Jan. 2010.
[24]R. T. H. Li, H. S.-H. Chung, W.-H. Lau and B. Zhou, “Use of hybrid PWM and passive resonant snubber for a grid-connected CSI,” IEEE Trans. Power Electron., vol. 25, no. 2, pp. 298–309, Feb. 2010.
[25]T.-F. Wu, C.-L. Kuo, K.-H. Sun, and H.-C. Hsieh, “Combined unipolar and bipolar PWM for current distortion improvement during power compensation,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1702–1709, Apr. 2014.
[26]H. Xiao, S. Xie, Y. Chen, and R. Huang, “An optimized transformerless photovoltaic grid-connected inverter, ” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1887–1895, May 2011.
[27]P. Cortes, A. Wilson, S. Kouro, J. Rodriguez, and H. Abu-Rub, “Model predictive control of multilevel cascaded H-bridge inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2691–2699, Aug 2010.
[28]C. Cecati, F. Ciancetta, and P. Siano, “A multilevel inverter for photovoltaic systems with fuzzy logic control, ” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 4115–4125, Dec. 2010.
[29]R. P. Aguilera, P. Lezana, and D. E. Quevedo, “Finite-control-set model predictive control with improved steady-state performance,” IEEE Trans. Ind. Inf., vol. 9, no. 2, pp. 658–667, May 2013.
[30]Y.-M. Chen, K.-Y. Liu, S.-K. Chiang, and Y.-R. Chang, “Bi-directional grid-tied inverter with predictive current control,” in Proc. IEEE ECCE, 2009, pp. 916–919.
[31]T.-F. Wu, K.-H. Sun, C.-L. Kuo, and C.-H. Chang, “Predictive current controlled 5-kW single-phase bidirectional inverter with wide inductance variation for dc-microgrid applications,” IEEE Trans. Power Electron., vol. 25, no. 12, pp. 3076–3084, Dec. 2010.
[32]X. Wu, G. Xiao, and B. Lei, “Simplified discrete-time modeling for convenient stability prediction and digital control design,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5333–5342, Nov. 2013.
[33]Krismadinata, N. A. Rahim, and J. Selvaraj, “Implementation of hysteresis current control for single-phase grid connected inverter,” in Proc. IEEE PEDS, 2007, pp. 1097–1101.
[34]M. A. M. Radzi and N. A. Rahim, “Neural network and bandless hysteresis approach to control switched capacitor active power filter for reduction of harmonics,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1477–1484, May 2009.
[35]X. Mao, R. Ayyanar, and H. K. Krishnamurthy, “Optimal various switching frequency scheme for reducing switching losses in single-phase inverters based on time-domain ripple analysis,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 991–1001, Apr. 2009.
[36]L. Malesani and P. Tenti, “A novel hysteresis control method for current-controlled voltage-source PWM inverters with constant modulation frequency,” IEEE Trans. Ind. Appl., vol. 26, no. 1, pp. 88–92, Jan./Feb. 1990
[37]B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Ind. Electron., vol. 37, no. 5, pp. 402–408, Oct. 1990.
[38]C. N.-M. Ho, V. S.-P. Cheung, and H. S.-H. Chung, “Constant-frequency hysteresis current control of grid-connected VSI without bandwidth control,” IEEE Trans. Power Electron., vol. 24, no. 11, pp. 2484–2495, Nov. 2009.
[39]T. Kerekes, R. Teodorescu, P. Rodriguez, G. Vazquez, and E. Aldabas, “A new high-efficiency single-phase transformerless PV inverter topology,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 184–191, Jan. 2011.
[40]R. Gonzalez, E. Gubia, J. Lopez, and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694–2702, Jul. 2008.
[41]S. V. Arahjo, P. Zacharias, and R. Mallwitz, “Highly efficient single-phase transformerless inverters for grid-connected photovoltaic system,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118–3128, Sep. 2010.
[42]B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, and B. Chen, “High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2235–2245, May 2013.
[43]Y. Bae and R.-Y. Kim, “Suppression of common-mode voltage using a multicentral photovoltaic inverter topology with synchronized PWM,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4722–4733, Sep. 2014.
[44]T. B. Lazzarin, G. A. T. Bauer, and I. Barbi, “A control strategy for parallel operation of single voltage source inverters: analysis, design and experimental results,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2194–2204, Jun. 2013.
[45]S. Eren, M. Pahlevaninezhad, A. Bakhshai, and P. K. Jain, “Composite nonlinear feedback control and stability analysis of a grid-connected voltage source inverter with LCL filter,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5059–5074, Nov. 2013.
[46]L. S. Garcia, G. M. Buiatti, L. C. de Freitas, E. A. A. Coelho, V. J. Farias, and L. C. G. de Freitas, “Dual transformerless single-stage current source inverter with energy management control strategy,” IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4644–4656, Oct. 2013.
[47]P. P. Dash and M. Kazerani, “Dynamic modeling and performance analysis of a grid-connected current-source inverter-based photovoltaic system,” IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 443–450, Oct. 2011.
[48]M. Victor, F. Greizer, S. Bremicker, and U. Hubler, “Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage,” U.S. Patent 741 180 2 B2, Aug. 12, 2008.
[49]S. Saridakis, E. Koutroulis, and F. Blaabjerg, “Optimization of SiC-based H5 and conergy-NPC transformerless PV inverters,” in Proc. IEEE ECCE, 2013, pp. 4732–4739.
[50]H. Schmidt, S. Christoph, and J. Ketterer, “Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke,” German Patent DE10 221 592 A1, Dec. 4, 2003.
[51]W. Yu, J.-S. Lai, H. Qian, and C. Hutchens, “High-efficiency MOSFET inverter with H6-type configuration for photovoltaic nonisolated ac-module applications,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1253–1260, Apr. 2011.
[52]L. Zhang, K. Sun, Y. Xing, and M. Xing, “H6 transformerless full-bridge PV grid-tied inverters,” IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1229–1238, Mar. 2014.
[53]E. M. Deloraine, S. Van Mierlo, and B. Derjavitch, “Communication system utilizing constant amplitude pulses of opposite polarities,” US Patent 2,629,857, Oct. 8, 1947.
[54]H. Inose and Y. Yasuda, “A unity bit coding method by negative feedback,” IEEE Proceedings, vol. 51, pp. 1524–1535, Nov. 1963.
[55]J. Paramesh and A. von Jouanne, “Use of sigma-delta modulation to control EMI from switch-mode power supplies,” IEEE Trans. Ind. Electron., vol. 48, no. 1, pp. 111–117, Feb. 2001.
[56]C. H. Bae, J. H. Ryu, and K. W. Lee, “Suppression of harmonic spikes in switching converter output using dithered sigma-delta modulation,” IEEE Trans. Ind. Appl., vol. 38, no. 1, pp. 159–166, Jan./Feb. 2002.
[57]G.-C. Hsieh and H.-L. Chen, “Analytic modeling and realization for sigma-delta-modulated power amplifier,” IET Power Electron., vol. 2, no. 5, pp. 496–507, Sep. 2009.
[58]C. J. Kikkert and D. J. Miller, “Asynchronous delta sigma modulation,” in Proc. IREE, 1975, pp. 83–88.
[59]S. Ouzounov, E. Roza, H. Hegt, G. van der weide, and A. van Roermund, “Analysis and design of high-performance asynchronous sigma-delta modulators with a binary quantizer,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 588–596, Mar. 2006.
[60]T. C. Green and B. W. Williams, “Spectra of delta-sigma modulated inverters: an analytical treatment,” IEEE Trans. Power Electron., vol. 7, no. 4, pp. 644–654, Oct. 1992.
[61]C.-H. Chang, Y.-H. Lin, Y.-M. Chen, and Y.-R. Chang, “Simplified reactive power control for single-phase grid-connected photovoltaic inverters,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2286–2296, May 2014.
[62]C.-H. Chang, F.-Y. Wu, and Y.-M. Chen “Modularized bi-directional grid-connected inverter with constant-frequency asynchronous sigma-delta modulation,” IEEE Trans. Ind. Electron., vol. 59, no. 11, pp. 4088–4100, Nov. 2012.
[63]A. Cagnano, E. de Tuglie, M. Liserre, and R. A. Mastromauro, “Online optimal reactive power control strategy of PV inverters,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4549–4558, Oct. 2011.
[64]W. Sinsukthavorn, E. Ortjohann, A. Mohd, N. Hamsic, and D. Morton, “Control strategy for three-/four-wire-inverter-based distributed generation,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3890–3899, Oct. 2012.
[65]J. Liu, J. Yang, and Z. Wang, “A new approach for single-phase harmonic current detecting and its application in a hybrid active power filter,” in Proc. IEEE IECON, 1999, pp. 849–854.
[66]M. Saitou, N. Matsui, and T. Shimizu, “A control strategy of single-phase active filter using a novel d-q transformation,” in Proc. IEEE IAS Conf., 2003, pp. 1222–1227.
[67]M. Saitou and T. Shimizu, “Generalized theory of instantaneous active and reactive powers in single-phase circuits based on Hilbert transform,” in Proc. IEEE PESC, 2002, pp. 1419–1424.
[68]Q. Zhang, X.-D. Sun, Y.-R. Zhong, M. Matsui, and B.-Y. Ren, “Analysis and design of a digital phase-locked loop for single-phase grid-connected power conversion systems,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3581–3592, Aug. 2011.
[69]S. Xu, J. Wang, and J. Xu, “A current decoupling parallel control strategy of single-phase inverter with voltage and current dual closed-loop feedback,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1306–1313, Apr. 2013.
[70]R. I. Bojoi, L. R. Limongi, D. Roiu, and A. Tenconi, “Enhanced power quality control strategy for single-phase inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 26, no. 3, pp. 798–806, Mar. 2011.
[71]L. Liu, H. Li, Z. Wu, and Y. Zhou, “A cascaded photovoltaic system integrating segmented energy storages with self-regulating power allocation control and wide range reactive power compensation,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3545–3559, Dec. 2011.
[72]P. Sun, C. Liu, J.-S. Lai, and C.-L. Chen, “Grid-tie control of cascade dual-buck inverter with wide-range power flow capability for renewable energy applications,” IEEE Trans. Power Electron., vol. 27, no. 4. pp. 1839–1849, Apr. 2012.
[73]C. Liu, P. Sun, J.-S. Lai, Y. Ji, M. Wang, C.-L. Chen, and G. Cai, “Cascade dual-boost/buck active-front-end converter for intelligent universal transformer,” IEEE Trans. Ind. Electron., vol. 59, no. 12, pp. 4671–4680, Dec. 2012.
[74]Microchip document, dsPIC30F1010/202X, dsPIC30F math library. Available: http://www.microchip.com/downloads/en/DeviceDoc/51459b.pdf.
[75]Y.-M. Chen, C.-H. Chang, and K.-Y. Liu, “Grid-tied inverter with current-mode asynchronous sigma-delta modulation,” in Proc. IEEE ECCE, 2009, pp. 928–933.
[76]R. D. Middlebrook and S. Cuk,“A general unified approach to modeling switching –converter power stage,”in Proc. IEEE PESC, 1976, pp. 18–34.
[77]Microchip document, dsPIC30F1010/202X, 16-bit digital signal controller Available: http://www.microchip.com/downloads/en/DeviceDoc/70000178d.pdf
[78]Y.-M. Chen, C.-H. Chang, and Y.-R. Chang “H5TM inverter with constant-frequency asynchronous sigma-delta modulation,” in Proc. IEEE ECCE, 2011, pp. 3522–3527.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57632-
dc.description.abstract近年來,由於結合再生能源之微型電網的需求與發展,市電併聯換流器成為了重要的電力調節設備。為了提高微型電網的可靠度,換流器的電流控制需達到雙向功率潮流與無效功率補償等功能。因此,本論文主旨在提出兩組以遲滯控制為基礎之新型電流控制策略。其中一組電流控制係採用非同步和差調變技術來產生換流器功率開關所需之脈波訊號。本論文之研究成果是最先將非同步和差調變技術應用在市電併聯換流器之電流控制上。因為非同步和差調變的變頻切換特性,可以加快換流器的動態響應速度以及降低功率開關切換時所造成的電磁干擾成分。此外,與傳統遲滯電流控制相較之下,其電力級之電路參數變動對切換頻率變動的影響也較小。另一方面,本論文亦開發出具定頻切換之非同步和差調變技術並且應用於換流器之電流控制上,其可以保有快速動態響應之特性。本論文針對所提出之非同步和差調變型電流控制與定頻式-非同步和差調變型電流控制的操作原理與數學推導做詳盡的描述。最後,將所提出之兩組電流控制策略應用於一千瓦之單相市電併聯換流器雛型機,並且透過電腦模擬與實測結果來驗證此換流器應用於交流與直流微型電網上的效能。zh_TW
dc.description.abstractThe objective of this dissertation is to develop two novel hysteresis-based current control strategies for single-phase grid-connected inverters (GCIs). One of the proposed current control strategies adopts the asynchronous sigma-delta modulation (ASDM), which consists of an integrator and a hysteresis comparator, to generate the gating signals for the power switches of the GCI. The usage of ASDM for the GCI’s output current control is first reporting in this dissertation. Since the ASDM has the variable switching frequency feature, it can improve the dynamic response and reduce the electromagnetic interference noise. Of particular importance, its switching frequency variation is much less sensitive to the power-stage parameters comparing to the conventional hysteresis current control. The other proposed current control strategy is to develop the constant-frequency ASDM (CF-ASDM) for the GCI’s output current control, which maintains the advantage of quick dynamic response. The operation principle and mathematic derivations of the proposed current-mode ASDM and CF-ASDM control strategies are developed thoroughly. A 1 kW GCI prototype for either ac or dc microgrid applications is built and tested. Computer simulations and experimental results are presented to confirm the theoretical results.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:55:05Z (GMT). No. of bitstreams: 1
ntu-103-F97921017-1.pdf: 9947712 bytes, checksum: 4ef80d662899079bc9583c1d08dcf21e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要....................................................I
Abstract..................................................II
Table of Contents........................................III
List of Figures...........................................VI
List of Tables............................................XI
Abbreviations............................................XII
Chapter 1 Introduction....................................1
1.1 Background...........................................1
1.2 Motivation...........................................4
1.3 Dissertation Outline.................................6
Chapter 2 Review of Previous Current Control Strategies of Grid-Connected Inverters................................9
2.1 Grid-Connected PV Systems............................9
2.2 Grid-Connected Inverters............................12
2.2.1 Transformer-Type Grid-Connected Inverters......14
2.2.2 Transformerless Grid-Connected Inverters.......15
2.3 Current Control Strategies..........................19
2.3.1 Hysteresis Current Controls....................19
2.3.2 Ramp Comparison Controls.......................23
2.3.3 Predictive Current Controls....................27
2.4 Summary.............................................29
Chapter 3 The Current-Mode Control with Asynchronous Sigma-Delta Modulation....................................31
3.1 Introduction........................................31
3.2 Delta Modulation....................................32
3.3 Sigma-Delta Modulation..............................34
3.4 Asynchronous Sigma-Delta Modulation (ASDM)..........38
3.5 The Proposed Constant Frequency-Asynchronous Sigma-
Delta Modulation (CF-ASDM)..........................43
3.6 Computer Simulations and Experimental Verifications
....................................................48
3.7 Summary.............................................59
Chapter 4 The Proposed Current-Mode ASDM Scheme for Single-Phase PV Inverters with Reactive Power Control.....61
4.1 Introduction........................................61
4.2 Simplified Reactive Power Control...................65
4.2.1 Simplified Power Calculation...................65
4.2.2 Smooth Power Adjustment........................68
4.3 Single-Phase PV Inverters with the Proposed Control
Strategy............................................75
4.4 Stability Evaluation with Small Signal Analysis.....77
4.5 Computer Simulations and Experimental Verifications
....................................................84
4.6 Summary.............................................95
Chapter 5 The Proposed Current-Mode CF-ASDM Scheme for Modularized Bi-Directional Grid-Connected Inverters.......97
5.1 Introduction........................................97
5.2 Bi-Directional Grid-Connected Inverters with the
Proposed Control Strategy...........................99
5.3 DC Bus Voltage Regulation..........................103
5.4 Modularized Techniques.............................106
5.5 Computer Simulations and Experimental Verifications
...................................................108
5.6 Summary............................................121
Chapter 6 Conclusions and Suggested Future Research.....123
6.1 Summary and Major Contributions....................123
6.2 Suggestions for Future Research....................125
References...............................................127
Vita.....................................................141
dc.language.isoen
dc.subject遲滯型電流控制zh_TW
dc.subject非同步和差調變zh_TW
dc.subject變頻切換/定頻切換zh_TW
dc.subject市電併聯換流器zh_TW
dc.subject交流/直流微型電網zh_TW
dc.subjectHysteresis-based current controlen
dc.subjectasynchronous sigma-delta modulationen
dc.subjectvariable/constant switching frequencyen
dc.subjectgrid-connected invertersen
dc.subjectac/dc microgridsen
dc.title單相市電併聯換流器之非同步和差調變電流模式控制zh_TW
dc.titleCurrent-Mode Control with Asynchronous Sigma-Delta Modulation for Single-Phase Grid-Connected Invertersen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳德玉,潘晴財,賴炎生,羅有綱,陳建富
dc.subject.keyword遲滯型電流控制,非同步和差調變,變頻切換/定頻切換,市電併聯換流器,交流/直流微型電網,zh_TW
dc.subject.keywordHysteresis-based current control,asynchronous sigma-delta modulation,variable/constant switching frequency,grid-connected inverters,ac/dc microgrids,en
dc.relation.page142
dc.rights.note有償授權
dc.date.accepted2014-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
9.71 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved