Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57613
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光(Chih-Kung Lee)
dc.contributor.authorTe-Chieh Changen
dc.contributor.author章德傑zh_TW
dc.date.accessioned2021-06-16T06:54:07Z-
dc.date.available2014-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citation[1] 'http://www.docin.com/p-191735588.html.', 2014
[2] 廖旭清, '補償駐極體揚聲器低頻響應之柔性結構板設計與分析,' 國立台灣大學工程科學及海洋工程研究所碩士論文, 2012.
[3] 'http://www.pcstore.com.tw/589/M01023043.html.', 2014
[4] 'http://www.bbk.com.tw/product.html.', 2014
[5] M. R. Bai, R.-L. Chen, and C.-J. Wang, 'Electroacoustic analysis of an electret loudspeaker using combined finite-element and lumped-parameter models,' The Journal of the Acoustical Society of America, vol. 125, pp. 3632-3640, 2009.
[6] G. Sessler, 'What's new in electroacoustic transducers,' ASSP Magazine, IEEE, vol. 1, pp. 3-13, 1984.
[7] S. Kokorowski, 'Analysis of adaptive optical elements made from piezolectric bimorphs,' JOSA, vol. 69, pp. 181-187, 1979.
[8] L. D. Copley, T. J. Cox, and M. R. Avis, 'Distributed mode loudspeaker arrays,' in Audio Engineering Society Convention 112, 2002.
[9] S. S. Sarkisov, M. J. Curley, G. Adamovsky, L. Huey, and A. Fields, 'Light-driven actuators based on polymer films,' Optical Engineering, vol. 45, pp. 034302-034302-10, 2006.
[10] Y. Mizutani, Y. Otani, and N. Umeda, 'Optically driven actuators using poly (vinylidene difluoride),' Optical Review, vol. 15, pp. 162-165, 2008.
[11] S. Zaidi, F. Lamarque, C. Prelle, O. Carton, and A. Zeinert, 'Contactless and selective energy transfer to a bistable micro-actuator using laser heated shape memory alloy,' Smart Materials and Structures, vol. 21, p. 115027, 2012.
[12] Z. L. Wang, 'Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics,' Nano Today, vol. 5, pp. 540-552, 2010.
[13] K.-T. Chen, C.-K. Chang, H.-L. Kuo, and C.-K. Lee, 'Optically defined modal sensors incorporating spiropyran-doped liquid crystals with piezoelectric sensors,' Sensors, vol. 11, pp. 1810-1818, 2011.
[14] C. Wen-Chi, W. An-Bang, L. Chih-Kung, K. Wen-Ching, C. Han-Lung, and L. Chih-Ting, 'Development of a photoconductive piezoelectronic material from composite of P(VDF-TrFE) and TiOPc,' in Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp, 2012, pp. 1-4.
[15] 陳漢龍, '提升孔洞駐極體材料致動與感測特性之研究,' 國立台灣大學工程科學及海洋工程研究所碩士論文, 2012.
[16] 陳昱吉, '陣列結構駐極體揚聲器系統之設計與研製,' 國立台灣大學應用力學研究所博士論文, 2012.
[17] 黃旭鐸, '以TiOPc/壓電圓板設計可撓鏡的研發,' 國立台灣大學工程科學及海洋工程研究所碩士論文, 2013.
[18] K.-T. Chen, C.-K. Chang, H.-L. Kuo, and C.-K. Lee, 'Design and fabrication of a piezoelectric mode 2 sensor based on optical modulated liquid crystal and spiropyran,' Smart Materials and Structures, vol. 20, p. 025018, 2011.
[19] K.-T. Chen, S.-D. Huang, Y.-H. Chien, W.-C. Chang, and C.-K. Lee, 'Development of an optically modulated piezoelectric sensor/actuator based on titanium oxide phthalocyanine thin film,' Smart Materials and Structures, vol. 21, p. 115025, 2012.
[20] F. L. P. a. L. S. Pedrotti, Introduction to Optics, 2 ed. vol. Inc.: New Jersey: Prentice-Hall International, Inc., 1993.
[21] S. Trolier-McKinstry, 'Crystal Chemistry of Piezoelectric Materials,' in Piezoelectric and Acoustic Materials for Transducer Applications, ed: Springer, 2008, pp. 39-56.
[22] A. Kholkin, N. Pertsev, and A. Goltsev, 'Piezoelectricity and crystal symmetry,' in Piezoelectric and Acoustic Materials for Transducer Applications, ed: Springer, pp. 17-38, 2008.
[23] 吳朗, 電子陶瓷-壓電: 全欣資訊圖書股份有限公司, 1994.
[24] R. Whatmore, 'Pyroelectric devices and materials,' Reports on progress in physics, vol. 49, p. 1335, 1986.
[25] 周卓明, 壓電力學: 全華圖書股份有限公司, 2003.
[26] 邱碧秀, 電子陶瓷材料. 財團法人徐氏基金會, 1988.
[27] 'http://www.eleceram.com.tw/index.asp?lang=2.', 2014
[28] 蕭文欣, '創新壓電變壓/換能器之理論與實驗:擬模態致動器及波傳設計理念之應用,' 國立台灣大學應用力學研究所碩士論文, 2000.
[29] C.-K. Lee, Piezoelectric laminates for torsional and bending modal control: theory and experiment, Ph.D. Dissertaion, Theoretical and Applied Mechnics, Cornell University, May, 1987.
[30] 楊智翔, '壓電能量擷取器應用於感應線圈驅動同步切換電路之自供電系統設計,' 國立台灣大學工程科學及海洋工程研究所碩士論文, 2011.
[31] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, 'IEEE standard on piezoelectricity,' ed: Society, 1988.
[32] N. N. Rogacheva, The theory of piezoelectric shells and plates: CRC Press, 1994.
[33] J. Yang, The mechanics of piezoelectric structures: World Scientific, 2006.
[34] J. W. Caruthers, Fundamentals of marine acoustics vol. 18: Elsevier, New York: Elsevier/North Holland Inc.1977.
[35] 'http://www.sounderpro.com.tw/reviw/equalizer/equalizer.html.', 2014
[36] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, 'Fundamentals of acoustics,' Fundamentals of Acoustics, 4th Edition, by Lawrence E. Kinsler, Austin R. Frey, Alan B. Coppens, James V. Sanders, pp. 560. ISBN 0-471-84789-5. Wiley-VCH, December 1999., vol. 1, 1999.
[37] P. M. Morse, Theoretical acoustics: Princeton University Press, Princeton, New Jersey, 1986.
[38] C. Lee, 'Theory of laminated piezoelectric plates for the design of distributed sensors/actuators. Part I: Governing equations and reciprocal relationships,' The Journal of the Acoustical Society of America, vol. 87, pp. 1144-1158, 1990.
[39] R. Lord, 'The theory of sound,' ed: Dover, New York, 1945.
[40] J. Goodman, 'Introduction to Fourier optics,' 2008.
[41] R. N. Bracewell and R. Bracewell, The Fourier transform and its applications vol. 31999: McGraw-Hill, New York, New York, 1986.
[42] D. T. Blackstock, Fundamentals of physical acoustics: John Wiley & Sons, 2000.
[43] K. M. Kadish, K. M. Smith, and R. Guilard, The porphyrin handbook: phthalocyanines: synthesis vol. 15: Academic Press, New York, New York, 2003.
[44] K. Y. Law, 'Organic photoconductive materials: recent trends and developments,' Chemical Reviews, vol. 93, pp. 449-486, 1993.
[45] T. Saito, W. Sisk, T. Kobayashi, S. Suzuki, and T. Iwayanagi, 'Photocarrier generation processes of phthalocyanines studied by photocurrent and electroabsorption measurements,' The Journal of Physical Chemistry, vol. 97, pp. 8026-8031, 1993.
[46] W. Hiller, J. Strahle, W. Kobel, and M. Hancak, 'Polymorphie, Leitfahigkeit und Kristallstrukturen von Oxo-phthalocyaninato-titan (IV),' Z. Kristallogr, vol. 159, pp. 173-183, 1982.
[47] K. Oka, O. Okada, and K. Nukada, 'Study of the Crystal Structure of Titanylphthalocyanine by Rietveld Analysis and Intermodular Energy Minimization Method,' Jpn. J. Appi. Phys. Vol, vol. 31, pp. 2181-2184, 1992.
[48] S. Yamaguchi and Y. Sasaki, 'Effect of water on primary photocarrier-generation process in Y-form titanyl phthalocyanine,' The Journal of Physical Chemistry B, vol. 104, pp. 9225-9229, 2000.
[49] L. Ling, 'The Applications of Electric Charge Generating Material (TiOPc) and Electric Charge Transporting Material (TPD) on Organic Photo Conductor Drum,' Chemistry (The Chinese Chem. SOC., Taipei), vol. 21, pp. 575-584, 2003.
[50] Z. D. Popovic and A.-m. Hor, 'Photoconductivity Studies of Titanyl Phthaloc yanine,' Molecular Crystals and Liquid Crystals, vol. 228, pp. 75-80, 1993.
[51] J. Noolandi and K. Hong, 'Theory of photogeneration and fluorescence quenching,' The Journal of Chemical Physics, vol. 70, pp. 3230-3236, 2008.
[52] W. P. Mason, Electromechanical Transducers and Wave Filters: Van Nostrand Reinhold, New York, New York,1946.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57613-
dc.description.abstract本論文提出以光電導材料(photoconductive material)嘗試加入應用光調變的控制機制於蜂鳴片壓電平面揚聲器中,並製造出一結合光、機、電之複合式元件。而使用之複合材料是透過結合光電導材料TiOPc (Titanyl Phthalocyanine)與高分子聚合物(copolymer)結合之薄膜以及壓電材料PZT (Lead Zirconate Titanate) 來製作。利用材料光致電性變化特性調變電極之阻抗表現來達到可即時控制該複合揚聲器之頻率響應、聲束指向性及聲場等相關聲學特性。
在溶液與薄膜的製程部分,我們以精密阻抗分析儀(Agilent 4294A)進行量測,並且整理分析TiOPc/copolymer薄膜的電學特性與薄膜製程參數間的關聯,再以電學阻抗匹配的方式來決定最後的薄膜製程參數。
在量測的部分,由於此種壓電型揚聲器因受限於材料的選用和結構設計之影響,使得頻率響應在低頻的表現不甚理想。我們藉由光電導材料TiOPc之阻抗變化在中低頻段(約40~8000Hz)下較為顯著之特點下,與壓電揚聲器做結合,並且在光場調變的控制下得到較大的振幅來發出低頻的聲音,進而大大地提升揚聲器之低頻響應。由實驗結果證實,本研究中所製備的複合式壓電蜂鳴片可以照光的方式來調制聲壓的變化。為了達成聲束指向性圖形控制的應用,我們試著設計不同的照光圖形來使壓電片表面分壓不均造成不均勻之振動,影響其指向性圖形大小,並且分析照光圖形所對應之聲場變化,進而藉由所光照之圖形分析後加以控制。
為了與聲學測量的數據作相互驗證及比較,後段我們分別以雷射位移計和ESPI電子斑干涉儀兩種方式來量化及圖形化致動器的表面形變狀態,並且找出其與聲學量測數據之關係,也證實此複合式光調控壓電揚聲器之可行性。
zh_TW
dc.description.abstractIn this thesis, we added photoconductive material to enable optical illumination control mechanism onto the operations of flat piezoelectric loudspeakers. We also developed a new smart composite device based on interactions of optical, mechanical and electrical fields. This smart composite material was composed of photoconductive material TiOPc (Titanyl Phthalocyanine) and piezoelectric material PZT (Lead Zirconate Titanate) in order to perform newly developed Opto-Piezo modulation mechanism. More specifically, the instant variation of TiOPc impedance when illuminated with light beam patterns was introduced to provide spatial electric field distribution across PZT so as to provide spatial control of piezoelectric speakers. This real-time in-situ spatial impedance varying capabilities provided us with a platform to instantly control the acoustic characteristics such as frequency responses, sound beam directivity patterns, and sound field created, etc. of piezoelectric speakers.
To characterize the solution and thin-film manufacturing process developed, the electrical impedance of TiOPc thin film was measured by Agilent 4294A Precision Impedance Analyzer. From the measured electrical impedance, the relationship between the thin-film processing parameters and the equivalent R-C value was retrieved by using the equivalent circuit model. The most appropriate parameters for the manufacturing processes developed were identified using the equivalent R-C values obtained.
The low-frequency performance of the flat piezoelectric loudspeakers was measured and found to be poor due to the material selection and the corresponding structure design. Taking advantages of the characteristic of the photoelectric conductive material TiOPc, which demonstrated noticeable impedance change at low-mid range frequency (about 40~8000Hz), the low-frequency performance of the flat piezoelectric speakers was enhanced. A variety of illuminated pattern was tried and examined to control the acoustic beam patterns created. The experimental results confirmed the directivity controlling capability of acoustic pressure generated through external illuminated light patterns.
Laser Displacement Meter and Electronic Speckle Pattern Interferometer (ESPI) was implemented to perform the measurement in order to compare and verify the numerical and graphical analysis of the light beam illumination pattern induced flat piezoelectric speakers outside shape/form changes. The correlation between the analysis results and the measurement data confirms the feasibility of our optically modulated flat piezoelectric speakers.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:54:07Z (GMT). No. of bitstreams: 1
ntu-103-R01543056-1.pdf: 5682618 bytes, checksum: 210cb1cad3b5ce36811e1ba8f975c954 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 v
圖目錄 viii
表目錄 xii
Chapter 1 緒論 1
1.1 前言 1
1.2 揚聲器簡介 2
1.3 研究動機及文獻回顧 5
1.4 論文架構 9
Chapter 2 理論推導與介紹 10
2.1 壓電材料簡介 10
2.2 壓電蜂鳴片 14
2.3 壓電力學理論 19
2.3.1 本構方程式 19
2.3.2 壓電與彈性板振動 23
2.4 線性壓電薄板理論與致動器方程式 26
2.5 聲學理論 30
2.5.1 波動方程式 30
2.5.2 聲壓位準 32
2.5.3 音程 33
2.5.4 指向性 35
2.6 異向性波束 36
2.6.1 雷利積分 (Rayleigh Integral) 36
2.6.2 空間傅立葉轉換 37
2.6.3 異向性聲源 37
Chapter 3 光電導材料TiOPc介紹與分析 39
3.1 TiOPc光電導特性 39
3.2 TiOPc薄膜 44
3.2.1 電學阻抗測量原理及實驗架構 44
3.2.2 薄膜電阻抗量測實驗結果 47
3.3 等效電路分析 56
Chapter 4 元件製作與實驗架設 59
4.1 壓電致動器與TiOPc薄膜之電學阻抗計算 59
4.2 光調控式壓電蜂鳴片之元件製作 66
4.3 聲學量測系統架設 69
4.3.1 頻率響應之量測系統 69
4.3.2 指向性聲束圖形之量測系統 71
Chapter 5 光調控式壓電蜂鳴片分析與結果討論 74
5.1 壓電蜂鳴片之頻率響應結果分析 74
5.2 壓電蜂鳴片之指向性圖形結果分析 79
5.3 複合式壓電蜂鳴片之表面形變測量 88
5.3.1 雷射位移計量測實驗結果 88
5.3.2 ESPI動態表面變形量測實驗結果 91
Chapter 6 結論與未來展望 94
6.1 結論 94
6.2 未來展望 95
REFERENCE 96
dc.language.isozh-TW
dc.title以TiOPc/蜂鳴片控制壓電揚聲器之聲學研究zh_TW
dc.titleAcoustic Research and Control of Piezoelectric Speakers Using A Spatially Modulated TiOPc/Piezo Buzzer Actuatoren
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee饒達仁(Da-Jeng Yao),吳文中(Wen-Jong Wu),謝志文(Chih-Wen Hsieh),鄭志強(Chih-Chiang Cheng)
dc.subject.keyword壓電材料,光電導材料,電阻抗,平面揚聲器,頻率響應,指向性,聲場,zh_TW
dc.subject.keywordpiezoelectric material,photoconductive material,electrical impedance,flat loudspeaker,frequency response,directivity,beam pattern,sound field,en
dc.relation.page113
dc.rights.note有償授權
dc.date.accepted2014-07-21
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
5.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved