Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57591
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭仁傑
dc.contributor.authorYing-Ching Yuanen
dc.contributor.author袁瀠晴zh_TW
dc.date.accessioned2021-06-16T06:53:01Z-
dc.date.available2019-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citationArrington DA, Winemiller KO (2002) Preservation effects on stable isotope analysis of fish muscle. Transactions of the American Fisheries Society 131: 337-342.
Barroso LM (1967) Biologia e pesca do peixe-voador (Hirundichthys affinis Gunther) no estado do Rio Grande do Norte. Boletim do Instituto de Pesca 7: 9-37.
Begg GA, Weidman CR (2001) Stable δ13C and δ18O isotopes in otoliths of haddock, Melanogrammus aeglefinus, from the northwest ocean. Marine Ecology Progress Series 216: 223-233.
Berkes F, Shaw AB (1986) Ecologically sustainable development: a Caribbean fisheries case study. Canadian Journal of Development Studies 7: 175-196.
Blake A, Campbell GA (2007) Conflict over flying fish: the dispute between Trinidad & Tobago and Barbados. Marine Policy 31: 327-335.
Bruun AF (1935) Flying-fishes (Exocoetidae) of the Atlantic: systematic and biological studies. Dana Reports 2(6): 1-106.
Bugoni L, McGill RAR, Furness RW (2010) The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. Journal of Experimental Marine Biology and Ecology 391: 190-200.
Campana S, Nielsen JD (1985) Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences 42: 1014-1032.
Campana SE, Oxenford HA, Smith JN (1993) Radiochemical determination of longevity in flyingfish Hirundichthys affinis using Th-228/Ra-228. Marine Ecology Progress Series 7: 211-219.
Campana, SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263-297.
Chang CW, Lin CH, Chen YS, Chenand MH, Chang SK. (2012a) Age validation, growth estimation and cohort dynamics of the bony flying fish (Hirundichthys oxycephalus) off eastern Taiwan. Aquatic Biology 15: 251-260
Chang SK, Chang CW, Ame E (2012b) Species composition and distribution of the dominant flyingfish (Exocoetidae) associated with the kuroshio current, south China sea. The Raffles Bulletin of Zoology 60(2): 539-550.
Chen YLL, Chen HY, Tuo SH, Ohki, K (2008) Seasonal dynamics of new production from Trichodesmium N2 fixation and nitrate uptake in the upstream Kuroshio and South China Sea basin. Limnology and oceanography 53: 1705–1721.
Correia AT, Pipa T, Goncalves JMS, Erzini K, Hamer PA (2011) Insights into population structure of Diplodus vulgaris along the SW Portuguese coast from otolith elemental signatures. Fisheries Research 111: 82-91.
Cruz LL, Mcgill RA, Goodman SJ, Hamer KC (2012) Stable isotope ratios of a tropical marine predator: confounding effects of nutritional status during growth. Marine Biology 159:873-880.
Dalzell P (1993) The fisheries biology of flying fishes (Families: Exocoetidae and Hemiramphidae) from the Camotes Sea, Central Philippines. Journal of Fish Biology 43:19-323.
Davenport J (1994). How and why do flying fish fly? Reviews in Fish Biology and Fisheries 4: 184-214.
DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42:495-506.
Dickson ML (1986) A comnarative studv of the pelagic food webs in two Newfoundland fjords using stable carbon and nitrogen isotope tracers. M.Sc.thesis. Memorial Univ. Newfoundland.
Edwards MS, Turner TF, Sharp ZD (2002) Short- and long-term effects of fixation and preservation on stable isotope values (δ13C, δ15N, δ34S) of fluid-preserved museum specimens. Copeia 4:1106-1112.
Elsdon TS, Ayvazian S, McMahon KW, Thorrold SR (2010) Experimental evaluation of stable isotope fractionation in fish muscle and otoliths. Marine Ecology Progress Series 408: 195-205.
Elsdon TS, Gillanders BM (2003) Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries 13: 219-235.
Evans F, Sharma RE (1963) The Exocoetidae of the Petula transatlantic expedition. Journal of the Linnean Society of London, Zoology 45: 53-59.
Feuchtmayr H, Grey J (2003) Effect of preparation and preservation procedures on carbon and nitrogen stable isotope determinations from zooplankton. Rapid Communications in Mass Spectrometry 17: 2605-2610.
Fry B (2006) Stable Isotope Ecology. Springer, Berlin.
Fry B, Sherr EB (1984) δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems, Contrib. Marine Science 27: 13-47.
Gomes C, Dales RB, Oxendorf HA (1998). The amplification of RAPD markers in stock discrimination of the four-wing flyingfish, Hirundichthys affinis in the central western Atlantic. Molecular Ecology 7: 1029-1039.
Gomes C, Oxenford HA, Dales RB (1999) Mitochondrial DNA D-loop variation and implications for stock structure of the four-wing flyingfish, Hirundichthys affinis in the central western Atlantic. Bulletin of Marine Science 64: 485-500.
Gorelova TA (1980) The feeding of young flyingfish of the family Exocoetidae and the smallwing flyingfish, Oxyporhamphus micropterus, of the family Hemiramphidae. Journal of Ichthyology 20: 60-71.
Graham BS, Koch P, Newsome S, McMahon KW, Aurioles D (2010) Using isoscapes to trace the movements and foraging behavior of top predators in oceanic ecosystems. In Isoscapes: Understanding Movement, Pattern and Processes on Earth Through Isotope Mapping (West, J. B., Bowen, G. J., Dawson, T. E. & Tu, K. P., eds). New York, NY: Springer.
Harvey CJ, Hanson PC, Essington TE (2002) Using bioenergetics models to predict stable isotope ratios in fishes. Can. J. Fish. Aquatic Sciences 59: 115-124.
Hebert CE, Shutt JL, Hobson KA, Weseloh DVC (1999) Spatial and temporal differences in the diet of Great Lakes herring gulls (Larus argentatus): evidence from stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 56:323-38.
Hidalgo M, Tomas J, Hoie H, Morales-Nin B, Ninnemann US (2008) Environmental influences on the recruitment process inferred from otolith stable isotopes in Merluccius merluccius off the Balearic Islands. Aquatic Biology 3: 195-207.
Hobson KA (1999) Stable-carbon and nitrogen isotope ratios of songbird feathers grown in two terrestrial biomes: implications for evaluating trophic relationships and breeding origins. Condor 101: 799-805
Hobson KA, Gibbs H, Gloutney M (1997). Preservation of blood and tissue samples for stable-carbon and stable-nitrogen isotope analysis. Canadian Journal of Zoology 75:1720-1723.
Hobson KA, Wassenaar LI, Taylor OR (1999) Stable isotopes (δD and δ13C) are geographic indicators of natal origins of monarch butterflies in eastern North America. Oecologia 120: 397-404.
Hobson KA, Welch HE (1992) Determination of trophic relationship within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecology Progress Series 84: 9-18.
Hoie H, Folkvord A (2006). Estimating the timing of growth rings in Atlantic cod otoliths using stable oxygen isotopes. Journal of Fish Biology 68: 826-837.
Hoie H, Otterlei E, Folkvord A (2004) Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES Journal of Marine Science 61: 243-251.
Hoie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L.) otoliths. Journal of Experimental Marine Biology and Ecology 289:41–58.
Hunte W, Oxenford HA, Mahon R (1995) Distribution and relative abundance of flyingfish (Exocoetidae) in the eastern Caribbean. II. Spawning substrata, eggs and larvae. Marine Ecology Progress Series 117: 25-37.
Ichimaru T (2005) The life cycle of three species of flyingfish in the north waters of Kyusyu and the recruitment of young flyingfish to the fishing ground. Bulletin of Nagasaki Prefectural Institute of Fisheries No. 33.
Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography 50: 383-405.
Johnson SP, Schindler DE (2009) Trophic ecology of Pacific salmon (Oncorhynchus spp.) in the ocean: a synthesis of stable isotope research. Ecological Research 24: 855-863.
Kaehler S, Pakhomov EA (2001) Effects of storage and preservation on the δ13C and δ15N signatures of selected marine organisms. Marine Ecology-Progress Series 219: 299-304.
Kalish JM (1991) Determinants of otolith chemistry: seasonal variation in the composition of blood plasma, endolymph and otoliths of bearded rock cod Pseudophysis harbatus. Marine Ecology Progress Series 74: 137-159.
Kelly B, Dempson JB, Power M. (2006) The effects of preservation on fish tissue stable isotope signatures. Journal of Fish Biology 69: 1595-1611.
Khohiattiwong S, Mahon R, Hunte W (2000) Seasonal abundance and reproduction of the four-wing flying fish (Hirundichthys affinis) off Barbados. Environmental Biology of Fishes 59: 43-60.
Kim ST, O’Neil JR, HillaireMarcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochimica et Cosmochimica Acta 71: 4704-4715.
Kim ST, O'Neil JR (1997) Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochimica et Cosmochimica Acta 61: 3461-3475.
Kroopnick P (1980) The distribution of 13C in the Atlantic Ocean, Earth and Planetary Science Letters 49: 469-484.
Lewallen EA, Pitman RL, Kjartanson SL, Lovejoy NR (2011) Molecular systematics of flyingfishes (Teleostei: Exocoetidae): evolution in the epipelagic zone. Biological Journal of the Linnean Society 102: 161-174.
Lewis J, Brundritt K, Fish AG (1962) The biology of the flyingfish, Hirundichthys affinis. Bulletin of Marine Science of the Gulf and Caribbean 12: 73-94.
Lewis JB (1964) Tagging experiments on the flyingfish Hirundichthys affinis (Gunther). Bulletin of Marine Science of the Gulf and Caribbean 14: 381-386.
Lewis JB, Brundritt JK, Fish AG (1962) The biology of the flyingfish, Hirundichthys affinis(Gunther). Bulletin of Marine Science of the Gulf and Caribbean 12: 73-94.
Lipskaya NY (1987) Feeding of flyingfish (Exocoetidae) larvae and fingerlings in the region of the Peruvian upwelling. Journal of Ichthyology 27: 108-116.
Madigan DJ, Carlisle AB, Dewar H, Snodgrass OE, Litvin SY, Micheli F, Block BA (2012) Stable isotope analysis challenges wasp-waist food web assumptions in an upwelling pelagic ecosystem. Scientific Reports 654.
McClure MM, McIntyre PB, McCune AR (2006) Notes on the natural diet and habitat of eight danionin fishes, including the zebrafish, Danio rerio. Journal of Fish Biology 69: 553-570.
McConnaughey TA, Burdett J, Whelan JF, Paull, CK (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61: 611-622.
Minagawa M, Wada E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between 15N and animal age. Geochimica et Cosmochimica Acta 48:1135-1140.
Minagawa M, Wada, E (1984) Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140.
Mulloney BC (1961) A preliminary report on the results of tagging experiments on the flyingfish Hirundichthys affinis (Gunther). W. I. Fishery Bulletin 4: 1-4.
Nesterov AA, Bazanov SI (1986) Vertical distribution and behavior of flyingfish (Exocoetidae). Journal of Ichthyology 26: 159-162.
Nonogaki H, Nelson JA, Patterson WP (2007) Dietary histories of herbivorous loricariid catfishes: evidence from delta C-13 values of otoliths. Environmental Biology of Fishes 78: 13-21.
Oxenford HA (1994) Movements of Flyingfish (Hirundichthys affinis) in the eastern Caribbean. Bulletin of Marine Science 7: 49-62.
Oxenford HA, Hunte W (1999) Feeding habits of the dolphin fish (Coryphaena hippurus) in the eastern Caribbean. Marine Science 63: 303-315
Oxenford HA, Hunte W, Deane R, Campana SE (1994) Otolith age validation and growth-rate variation in flyingfish (Hirundichthys affinis) from the eastern Caribbean. Marine Biology 7: 585-592.
Oxenford HA, Mahon R, Hunte W (1995a) Distribution and relative abundance of flyingfish (Exocoetidae) in the eastern Caribbean. I. Adults. Marine Ecology Progress Series 117: 11-23.
Oxenford HA, Mahon R, Hunte W (1995b) Distribution and relative abundance of flyingfish (Exocoetidae) in the eastern Caribbean. III. Juveniles. Marine Ecology Progress Series 117: 39-47.
Patterson WP, Smith GR, Lohmann KC ( 1993 ) Continental Paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes. In Climate Change in Continental Isotopic Records (ed. P. K. Swart et al.) Geophysical Monograph Series 78: 191-202.
Post DM (2002) Using stable isotope methods to estimate trophic position: models, methods, and assumptions. Ecology 83: 703-718.
Potts AC, Thomas AD, Nichols E (2003) An economic and social assessment of the flyingfish (pelagic) fishery of Tobago, Trinidad and Toba. Gulf and Caribbean Fisheries Institute 54: 635-649.
Purell JK, Taplin BK, Karr JD (2010) Stable carbon and oxygen isotope ratios of otoliths differentiate juvenile winter flounder (Pseudopleuronectes americanus) habitats. Marine and Freshwater Research 61 : 34-41.
Radtke RL, Showers W, Moksness E, Lenz P (1998) Corrigendum: environmental information stored in otoliths: insights from stable isotopes (Mar. Biol. 127:161–170, 1996). Marine Biology 132: 347-348.
Rau GH, Meams AJ, Young DR, Olson RJ, Schafer HA, Kaplan IR (1983) Animal 13C : 12Ccorrelates with trophic level in pelagic food webs. Ecology 64, 1314-1318.
Resosudarmo BP (1995) The construction of a bioeconomic model of the Indonesian flyingfish fishery. Marine Resource Economics 10: 357-372.
Rose CD, Hassler WW (1974) Food Habits and Sex Ratios of Dolphin Coryphaena hippurus captured in the Western Atlantic Ocean off Hatteras, North Carolina. Trans. American Fisheries Society 103: 94-100.
Sarakinos HC, Johnson ML, Vander Zanden MJ (2002) A synthesis of tissue-preservation effects on carbon and nitrogen stable isotope signatures. Canadian Journal of Zoology 80: 381-387.
Schwarcz HP, Gao Y, Campana S, Browne D, Knyf M, Brand U (1998) Stable carbon isotope variations in otoliths of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 1798-1806.
Shephard S, Trueman C, Rickaby R, Rogan E (2007) Juvenile life history of NE Atlantic orange roughy from otolith stable isotopes. Deep-Sea Research I 54: 1221-1230.
Shiao JC, Yui TF, Hoie H, Ninnemann U, Chang, SK. (2009) Otolith O and C stable isotope compositions of southern bluefin tuna Thunnus maccoyii (Pisces: Scombridae) as possible environmental and physiological indicators. Zoological Studies 48: 71-82.
Shimose T, Yokawa K, Saito H (2010) Habitat and food partitioning of billfishes (Xiphioidei). Journal of Fish Biology 76: 2418-2433.
Solomon CT, Weber PK, Cech JJ, Ingram BL, Conrad ME, Machavaram MV, Pogodina AR, Franklin RL (2006) Experimental determination of the sources of otolith carbon and associated isotopic fractionation. Canadian Journal of Fisheries and Aquatic Sciences 63(1): 79-89.
Stevens, J. D. (1973). Stomach contents of the blue shark (Prionace glauca) off Southwest England. Journal of the Marine Biological Association of the United Kingdom 53: 357-361.
Storm-Suke A, Dempson JB, Reist JD, Power M (2007) A field-derived oxygen isotope fractionation equation for Salvelinus species. Rapid Communications in Mass Spectrometry 21: 4109-4116.
Sweeting CJ, Polunin NVC, Jennings S (2004) Tissue and fixative dependent shifts of δ13C and δ15N in preserved ecological material. Rapid Communications in Mass Spectrometry 18: 2587-2592.
Tang, TY, Hsueh Y, Yang YJ, Ma JC (1999) Continental slope flow northeast of Taiwan. Journal of Physical Oceanography 29: 1353-1362.
Thorrold SR, Campana SE, Jones CM, Swart PK (1997b) Factors determining δ13C and δ18O fractionation in aragonitic otoliths of marine fish. Geochimica et Cosmochimica Acta 61: 2909-2919.
Thorrold SR, Jones CM, Campana SE (1997a) Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Association for the Sciences of Limnology and Oceanography 42: 102-111.
Thresher RE (1999) Elemental composition of otoliths as a stock delineator in fishes. Fisheries Research 43: 165-204.
Tricas TC (1978) Relationships of the blue shark, Prionace glauca, and its prey species near Santa Catalina Island, California. Bulletin of the U.S. Fish Commission 77:175-182.
Van Noord JE, Lewallen EA, Pitman RL (2013) Flyingfish feeding ecology in the eastern Pacific: prey partitioning within a speciose epipelagic community. Journal of Fish Biology 83: 326-342.
Weidel BC, Ushikub T, Carpenter SR, Kita NT, Cole JJ, Kitchell JF, Pace ML, Walley JW (2007) Diary of a bluegill (Lepomis marcrochirus): daily δ13C and δ18O records in otoliths by ion microprobe. Canadian Journal of Fisheries and Aquatic Sciences 64 1641–1645.
Wu CC, Lin JC, Su WC (2006) Diet and feeding habits of dolphinfish (Coryphaena hippurus) in the waters off eastern Taiwan. Journal of Taiwan Fisheries Research 14: 13-27
Wurster CM, Patterson WP (2003) Metabolic rate of late Holocene freshwater fish: evidence fromδ13C values of otoliths. Paleobiology 29: 492-505.
Wurster CM, Patterson WP, Stewart DJ, Bowlby JN, Stewart TJ (2005) Thermal histories, stress, and metabolic rates of Chinook salmon (Oncorhynchus tshawytscha) in Lake Ontario: evidence from intra-otolith stable isotope analyses. Canadian Journal of Fisheries and Aquatic Sciences 62: 700-713.
Young HS, McCauley DJ, Dirzo R, Dunbar RB, Shaffer SA (2010) Niche partitioning among and within sympatric tropical seabirds revealed by stable isotope analysis. Marine Ecology Progress Series 416: 285-94.
Zerner C (1986) The flying fishermen of Mandar. Cult Surviv Q 11 (Spec Issue): 18-22.
Zhou JL, Y Wu, J Zhang, QS Kang and ZT Liu (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65: 310-317
Zuyev GV, Nikol'sky VN (1980) Procedure for the quantitative recording of flying fishes (Exocoetidae). Journal of Ichthyology 20: 147-149.
王世斌 (2008) 臺灣沿近海飛魚卵資源量評估及管理措施之研究 (Ⅱ)。行政院農 業委員會漁業署九十七年度科技計畫研究報告。
王世斌、莊立在、張晉嘉 (2009) 臺灣沿近海飛魚資源動態及管理措施之研究。
行政院農業委員會漁業署九十八年度科技計畫研究報告。
林宗威 (2010) 以粒線體COI基因探討西北太平洋尖頭細身飛魚之族群親源關
係。國立中山大學海洋生物所。
邵廣昭 (2014) 臺灣魚類資料庫 網路電子版 http://fishdb.sinica.edu.tw
張水鍇 (2008) 飛魚面面觀。 漁業推廣 261:32-36。
張水鍇 (2009) 飛魚資源之地理分布及管理之研究。行政院農委會漁業署九十八
年度科技計畫報告。
張水鍇 、林忠暉 (2012) 臺灣黑潮海域飛魚的優勢種與時空分布。漁業推廣 308: 10-15。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57591-
dc.description.abstract飛魚廣泛分布於熱帶及副熱帶海域,以浮游動物為食並且也是大型魚類所捕食的對象,在食物鏈中屬於低階消費者,飛魚除了擔任重要的能量傳遞者之外,同時也有助於穩固食物鏈的生態平衡。臺灣飛魚漁業可分為兩類:一為臺灣東北部的飛魚卵漁業,漁汛期為4 ~ 7月;一為臺灣東南部的飛魚漁業,魚汛期為3 ~ 6月。尖頭細身飛魚 (Hirundichthys oxycephalus) 為臺灣東北部飛魚卵漁業捕獲對象的親魚,亦為臺灣東部海域飛魚優勢種之一,近年來漁獲量的減少使得飛魚及飛魚卵漁業管理問題引起重視。本研究針對尖頭細身飛魚進行洄游動向研究,此外也探討臺灣東部海域9種飛魚魚種與大型魚類間的食物位階。飛魚樣本採自日本五島、臺灣基隆、花蓮及綠島,本研究針對上述樣本進行耳石進行穩定性碳氧同位素分析來推算生活史經歷溫度,並且配合海表溫來推測魚體是否進行日本與臺灣間的大尺度洄游,結果顯示日本五島所採魚體均有進行日本與臺灣間的大尺度洄游;基隆、花蓮及綠島所採集的魚體除了會在日本與臺灣進行大尺度洄游外,也有在當地海域棲息或隨著特定溫度的水團進行游動,顯示尖頭細身飛魚在臺灣東部海域有相當多元的洄游生活史。而在臺灣東部海域15種大型魚類與9種飛魚物種進行肌肉穩定性碳氮同位素分析的結果顯示,9種飛魚以黑鰭鬚唇飛魚 (Cheilopogon cyanopterus) 食物階層最高,白鰭鬚唇飛魚最低 (Cheilopogon unicolor),而東部海域大型魚類與飛魚約有兩個食物階層的差異。穩定性碳氮同位素結果顯示飛魚食物來源均為海源性碳源,旗魚科 (Istiophoridae)、劍旗魚 (Xiphias gladius)、鬼頭刀 (Coryphaena hippurus) 及鋸峰齒鮫 (Prionace glauca) 皆可能是飛魚的掠食者,此研究結果對飛魚的基礎個體生態學提供長足的了解,並可作為飛魚漁業管理之參考。zh_TW
dc.description.abstractFlying fishes (Exocoetidae) distribute worldwide in tropical and sub-tropical waters. In the pelagic food web, flying fish serve as a low trophic-level consumer feeding mainly on zooplankton. The eggs of Hirundichthys oxycephalus are harvested off northeastern Taiwan between April and July and adult fish are the major targeted species off the southeastern coast of Taiwan between March and June. In this study, we analyzed the otolith stable oxygen and carbon isotopic composition of the flying fish (Hirundichthys oxycephalus) collected from the coastal waters of Keelung, Hualien, Green Island, and Goto Island, Japan to reconstruct their migratory patterns. We also analyzed the muscle stable carbon and nitrogen isotope composition of the 9 flying fish species and 15 large fish from the waters off eastern Taiwan in order to understand the food web structure. Otolith stable oxygen isotopic composition shows that H. oxycephalus collected from Goto Island all migrated between Japan and Taiwan; H. oxycephalus collected from Keelung, Hualien and Green Island show different migratory life histories, one migrated between Japan and Taiwan, the others were local residence or stay in specific temperature waters. These results suggest diversified migratory patterns of H. oxycephalus in the waters off eastern Taiwan. Stable carbon and nitrogen isotopic composition shows that Cheilopogon cyanopterus has the highest δ15N value and Cheilopogon unicolor has the lowest δ15N value in the 9 flying fish species. There are two trophic levels differences between large predator fish and flying fish in the waters of eastern Taiwan. Muscle δ13C values suggested that flying fish is one of the main prey fed by the Istiophoridae, Xiphias gladius, Coryphaena hippurus and Prionace glauca.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:53:01Z (GMT). No. of bitstreams: 1
ntu-103-R00241203-1.pdf: 4407876 bytes, checksum: 31a9fd448b239b17a3292f3f455bf0c7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要………………………………………..........................................................ⅰ
英文摘要………………………………………..........................................................ⅱ
表目錄………………………………………..............................................................ⅶ
圖目錄………………………………………..............................................................ⅷ
附錄目錄………………………………………..........................................................ⅹ
一、 前言 1
1.1. 飛魚簡介 1
1.2. 前人研究及文獻回顧 2
1.3. 飛魚漁業現況 4
1.4. 飛魚魚種介紹 5
1.4.1. 尖頭細身飛魚 5
1.4.2. 短鰭擬飛魚 6
1.4.3. 長頷擬飛魚 6
1.4.4. 單鬚飛魚 6
1.4.5. 細頭斑鰭飛魚 6
1.4.6. 斑鰭飛魚 7
1.4.7. 紅斑鬚唇飛魚 7
1.4.8. 黑鰭鬚唇飛魚 7
1.4.9. 白鰭鬚唇飛魚 8
1.5. 耳石與生活史研究 8
1.5.1. 耳石穩定性同位素組成分析 9
1.6. 食物階層及食物網 9
1.7. 研究目的及假設 10
1.7.1. 以耳石穩定性同位素解析飛魚洄游動向 10
1.7.2. 以穩定性碳氮同位素組成解析飛魚在食物網的角色 11
二、 材料與方法 12
2.1. 研究地點 12
2.1.1. 耳石穩定性碳氧同位素分析之飛魚採樣 12
2.1.2. 肌肉穩定性碳氮同位素分析之飛魚採樣 12
2.1.3. 肌肉穩定性碳氮同位素分析之大型魚類採樣 13
2.2. 海洋表層溫度及穩定性氧同位素 13
2.3. 生殖腺指數 (Gonadosomatic index, GSI) 14
2.4. 耳石製備及分析 14
2.4.1. 耳石包埋及研磨 14
2.4.2. 耳石穩定性碳氧同位素分析 15
2.4.3. 日輪判讀及成長方程式 16
2.5. 胃內容物製備及分析 17
2.5.1. 大型魚類樣本 17
2.5.2. 飛魚肌肉及胃內容物樣本 17
2.5.3. 穩定性碳氮同位素分析 17
三、 結果 19
3.1. 成長方程式回推魚體日齡及孵化月份 19
3.2. 海洋表層溫度及穩定性氧同位素 19
3.2.1. 海洋表層溫度 19
3.2.2. 海水穩定性氧同位素 19
3.3. 耳石穩定性碳氧同位素分析 20
3.3.1. 日本五島 20
3.3.2. 基隆 21
3.3.3. 花蓮 22
3.3.4. 綠島 24
3.3.5. 綜合比較 25
3.4. 肌肉及胃內容物穩定性碳氮同位素分析 25
3.4.1. 飛魚個體資料及生殖腺指數 (GSI) 25
3.4.2. 飛魚胃壁肌肉分析 27
3.4.3. 飛魚胃內容物分析 28
3.4.4. 大型魚類肌肉穩定性同位素分析 30
3.4.5. 綜合比較 32
四、 討論 33
4.1. 以耳石同位素探討尖頭細身飛魚洄游動向 33
4.1.1. 穩定性氧同位素 33
4.1.2. 穩定性碳同位素 37
4.2. 以穩定性碳氮同位素探討飛魚食物階層動態 39
4.2.1. 保存方式對δ13C及δ15N之影響 39
4.2.2. 穩定性碳同位素分析 40
4.2.3. 穩定性氮同位素分析 40
五、 結論 44
六、 參考文獻 45

表目錄
表一、尖頭細身飛魚耳石之採集資料 57
表二、尖頭細身飛魚之回推孵化月份、海表溫與δ18Ootolith回推溫度 58
表三、2009~2012年各採樣海域之平均月均溫 59
表四、尖頭細身飛魚耳石回推孵化時間與溫度差異 60
表五、尖頭細身飛魚之同位素分析變化與水體環境季節變化比較 61
表六、穩定性碳氮同位素分析之飛魚物種及其資料 62
表七、飛魚物種穩定性碳氮同位素分析結果 64
表八、穩定性碳氮同位素分析之大型物種及其資料 65
表九、大型魚類之肌肉穩定性碳氮同位素分析結果 66
表十、飛魚之穩定性氮同位素與體長關係 67

圖目錄
圖一、穩定性碳氧同位素分析之尖頭細身飛魚採樣點 68
圖二、穩定性碳氮同位素分析之飛魚與大型魚類採樣點 69
圖三、尖頭細身飛魚之耳石矢狀石 70
圖四、尖頭細身飛魚矢狀石粉末刮取介面 71
圖五、尖頭細身飛魚耳石矢狀石輪紋 72
圖六、日本五島尖頭細身飛魚δ18Ootolith分析結果 73
圖七、日本五島尖頭細身飛魚δ13Cotolith分析結果 74
圖八、基隆尖頭細身飛魚δ18Ootolith分析結果 75
圖九、基隆尖頭細身飛魚δ13Cotolith分析結果 76
圖十、花蓮尖頭細身飛魚δ18Ootolith分析結果 77
圖十一、花蓮尖頭細身飛魚δ13Cotolith分析結果 78
圖十二、綠島尖頭細身飛魚δ18Ootolith分析結果 79
圖十三、綠島尖頭細身飛魚δ13Cotolith分析結果 80
圖 十四、9種飛魚之肌肉與胃內容物之穩定性碳氮同位素(δ13C、δ15N)分析結果 81
圖十五、飛魚胃內容物中所發現魚類耳石 (紅色箭頭處) 82
圖 十六、大型魚類與飛魚肌肉之穩定性碳氮同位素(δ13C、δ15N)分析結果 83
圖十七、尖頭細身飛魚個體耳石分析δ13Cotolith與δ18Ootolith結果比較圖 84
圖十八、尖頭細身飛魚胃袋保存方式不同之穩定性碳氮同位素分析結果 85
圖十九、各飛魚魚種之穩定性碳氮同位素(δ13C、δ15N)分析結果 86

附錄目錄
附錄一、臺灣海域自1999年起飛魚及飛魚卵漁業歷年產量 87
附錄二、尖頭細身飛魚之范氏成長方程式von Bertalanffy growth equations 88
附錄三、臺灣東北角海域逆時針渦流 89
dc.language.isozh-TW
dc.title以穩定性同位素組成探討尖頭細身飛魚之洄游動向及食性階層zh_TW
dc.titleMigratory patterns and trophic niche of flying fish Hirundichthys oxycephalus inferred by stable isotope compositionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張水鍇,王佳惠,王世斌,陳永松
dc.subject.keyword飛魚,耳石,洄游,穩定性同位素,食物網結構,zh_TW
dc.subject.keywordFlying fish,Otolith,Migration,Stable isotope,Food web,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2014-07-22
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept海洋研究所zh_TW
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
4.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved