Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林招松
dc.contributor.authorJun-Ming Liuen
dc.contributor.author柳俊銘zh_TW
dc.date.accessioned2021-06-16T06:52:12Z-
dc.date.available2014-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-22
dc.identifier.citation[1] S. G. Benka, “The energy challenge.” Physics Today, 55(4), 38-39, (2002).
[2] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering. (2011).
[3] R. D. Wieting, “CIS product introduction: Progress and challenges.” American Institute of Physics Conference Series 462, 3-8, (1999).
[4] W. Horig, H. Neumann, H. Sobotta, B. Schumann and G. Kuhn, “The optical properties of CuInSe2 thin films.” Thin Solid Films, 48(1), 67-72, (1978).
[5] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19.9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor.” Progress in Photovoltaics: Research and Applications, 16(3), 235-239, (2008).
[6] Y. Yan, R. Noufi and M. M. Al-Jassim, “Grain-boundary physics in polycrystalline CuInSe2 revisited: experiment and theory.” Physical Review Letters, 96(20), 205501, (2006).
[7] F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules.” Solar Energy, 77(6), 685-695, (2004).
[8] T. Nakada, Y. Hirabayashi, T. Tokado, D. Ohmori and T. Mise, “Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts.” Solar Energy, 77(6), 739-747, (2004).
[9] W. S. Chen, J. M. Stewart, B. J. Stanbery and W. E. Devaney, “Development of thin film polycrystalline CuIn1-xGaxSe2 solar cells.” 19th IEEE Photovoltaic Specialists Conference , 1, 1445-1447, (1987).
[10] P. Jackson , D. Hariskos, R. Wuerz, W. Wischmann and M. Powalla, “Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8%.” Physica status solidi (RRL)-Rapid Research Letters, 8(3), 219-222, (2014).
[11] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro and L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor.” 24th European Photovoltaic Solar Energy Conference, 21-25, (2009).
[12] www.newport.com/Introduction-to-Solar-Radiation/411919/1033/content.aspx
[13] W. Greg and E. Keith, “Best research-cell efficiencies.” National Renewable Energy Laboratory (NREL), (2014).
[14] R. S. Ohl. “Light sensitive electric device.” US Patent 240252, (1941).
[15] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells.” Applied Physics Letters, 73(14), 1991-1993, (1998).
[16] W. Theis, “Optical properties of porous silicon.” Surface Science Reports, 29(3), 91-192, (1997).
[17] M. A. Green and M. J. Keevers, “Optical properties of intrinsic silicon at 300 K.” Progress in Photovoltaics: Research and Applications, 3(3), 189-192, (1995).
[18] J. Haynos, J. Allison, R. Arndt and A. Meulenberg, “The Comsat non-reflective silicon solar cell: a second generation improved cell.” International Conference on Photovoltaic Power Generation, 487, (1974).
[19] M. A. Green, “The path to 25% silicon solar cell efficiency: history of silicon cell evolution.” Progress in Photovoltaics: Research and Applications, 17(3), 183-189, (2009).
[20] A. W. Bett, F. Dimorth, W. Guter, R. Hoheisel, E. Oliva, S. P. Philipps, J. Schone, G. Siefer, M. Steiner, A. Wekkeli, E. Welser, M. Meusel, W. Kostler and G. Strobl, “Highest efficiency multi-junction solar cell for terrestrial and space applications.” Space, 25(25.8), 30-6, (2009).
[21] K. W. Boer, “The CdS/Cu2S Solar Cell I. Minority Carrier Generation and Transport in the Cu2S Emitter.” Physica status solidi (a), 40(2), 355-384, (1977).
[22] X. Wu, “High-efficiency polycrystalline CdTe thin-film solar cells.” Solar Energy, 77(6), 803-814, (2004).
[23] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hoetzel, J. Bailat, J. Steinhauser, M. Marmelo, G. Monteduro and L. Castens, “High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D reactor.” 24th European Photovoltaic Solar Energy Conference, 21-25, (2009).
[24] K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature.” Applied Physics A, 69(2), 179-185, (1999).
[25] R. Powell, G. Dorer, N. Reiter, H. McMaster, S. Cox and T. Kahle, “Apparatus and method for depositing a material on a substrate.” US Patent 5,945,163. US: First Solar, LLC, (1999).
[26] B. O’regan and M. Grfitzeli, “A low-cost, high-efficiency solar cell based on dye-sensitized.” Nature, 353, 737-740, (1991).
[27] S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, Basile F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. Khaja Nazeeruddin and M. Gratzel, “Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers.” Nature Chemistry, (2014).
[28] R. D. Wieting, “CIS product introduction: Progress and challenges.” American Institute of Physics Conference Series, 462, 3-8, (1999).
[29] H Hahn, G Frank, W Klinger, A Meyer, G Storger, Z. anorg. allgem. Chem, 288, 257, (1956).
[30] S. Wagner, J. L. Shay, P. Migliorato and H. M. Kasper, “CuInSe2/CdS heterojunction photovoltaic detectors.” Applied Physics Letters, 25(8), 434-435, (1974).
[31] L. L. Kazmerski, F. R. White and G. K. Morgan, “Thin‐film CuInSe2/CdS heterojunction solar cells.” Applied Physics Letters, 29(4), 268-270, (1976).
[32] R. Mickelsen and W. Chen, Photovoltaic Specialists Conference, Conference Record of the Twentieth IEEE, 800-804. (1981).
[33] J. E. Jaffe and A. Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors.” Physical Review B, 29(4), 1882, (1984).
[34] M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang and R. Noufi, “High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga)Se2-based solar cells.” Solar Energy Materials and Solar Cells, 41, 231-246, (1996).
[35] O. Lundberg, M. Edoff and L. Stolt, “The effect of Ga-grading in CIGS thin film solar cells.” Thin Solid Films, 480, 520-525, (2005).
[36] D. W. Niles, K. Ramanathan, F. Hasoon, R. Noufi, B. J. Tielsch and J. E. Fulghum, “Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 15(6), 3044-3049, (1997).
[37] M.A. Contreras, B. Egaas, P. Dippo, J. Webb, J. Granata, K. Ramanathan, S. Asher, A. Swartzlander, and R. Noufi, “On the role of Na and modifications to Cu(In,Ga)Se2 absorber materials using thin-MF (M=Na, K, Cs) precursor layers.” Photovoltaic Specialists Conference, Conference Record of the Twenty-Sixth IEEE , 359-362, (1997)
[38] S. B. Zhang, S. H. Wei and A. Zunger, “Stabilization of ternary compounds via ordered arrays of defect pairs.” Physical Review Letters, 78(21), 4059, (1997).
[39] T. Godecke, T. Haalboom and F. Ernst, “Phase equilibria of Cu-In-Se. I. Stable states and nonequilibrium states of the In2Se3-Cu2Se subsystem.” Zeitschrift fur Metallkunde, 91(8), 622-634, (2000).
[40] C. L. Yaws, Handbook of Vapor Pressure: Inorganic Compounds and Element, 4, (1995).
[41] M. E. Calixto, K. D. Dobson, B. E. McCandless and R.W. Birkmire, “Controlling growth chemistry and morphology of single-bath electrodeposited Cu(In,Ga)Se2 thin films for photovoltaic application.” Journal of the Electrochemical Society, 153(6), G521-G528, (2006).
[42] E. Saucedo, V. Izquierdo-Roca, C. M. Ruiz, L. Parissi, C. Broussillou, P.-P. Grand, J. S. Jaime-Ferrer, A. Perez-Rodriguez, J. R. Morante, V. Bermudez, “Key role of Cu–Se binary phases in electrodeposited CuInSe2 precursors on final distribution of Cu–S phases in CuIn(S,Se)2 absorbers.” Thin Solid Films, 517(7), 2268-2271, (2009).
[43] A. Ennaoui, “Chemical bath process for highly efficient Cd-free chalcopyrite thin-film-based solar cells.” Canadian Journal of Physics, 77(9), 723-729, (2000).
[44] T. Nakada and M. Mizutani, “18% efficiency Cd-free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers.” Japanese Journal of Applied Physics, 41(2B), L165, (2002).
[45] A. Ennaoui, M. Bar, J. Klaer, T. Kropp, R. Saez‐Araoz and M. C. Lux‐Steiner, “Highly‐efficient Cd‐free CuInS2 thin‐film solar cells and mini‐modules with Zn(S,O) buffer layers prepared by an alternative chemical bath process.” Progress in Photovoltaics: Research and Applications, 14(6), 499-511, (2006).
[46] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann and A. N. Tiwar, “Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells.” Progress in Photovoltaics: Research and Applications, 12(2‐3), 93-111, (2004).
[47] G. Brown, P. Stone, J. Woodruff, B. Cardozo and D. Jackrel, “Device characteristics of a 17.1% efficient solar cell deposited by a non-vacuum printing method on flexible foil.” Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE , 003230-003233, (2012).
[48] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications. (2001).
[49] W. Plieth, Electrochemistry for materials science. (2008).
[50] N. Kanani, Electroplating: basic principles, processes and practice. (2004).
[51] D. Lincot, J. F. Guillemoles, S. Taunier, D. Guimard, J. Sicx-Kurdi, A. Chaumont, O. Roussel, O. Ramdani, C. Hubert, J. P. Fauvarque, N. Bodereau, L. Parissi, P. Panheleux, P. Fanouillere, N. Naghavi, P. P. Grand, M. Benfarah, P. Mogensen and O. Kerrec, “Chalcopyrite thin film solar cells by electrodeposition.” Solar Energy, 77(6), 725-737, (2004).
[52] V. K. Kapur, B. M.Basol and E. S. Tseng, “Low cost methods for the production of semiconductor films for CuInSe2/CdS solar cells.” Solar Cells, 21(1), 65-72, (1987).
[53] A. Kampmann, P. Cowache, D. Lincot and J. Vedel, “Junction Formation Studies of One-Step Electrodeposited CuInSe2 on CdS.” Journal of The Electrochemical Society, 146(1), 150-155, (1999).
[54] R. N. Bhattacharya, W. Batchelor, J. F. Hiltner and J. R. Sites, “Thin-film CuIn1-xGaxSe2 photovoltaic cells from solution-based precursor layers.” Applied Physics Letters, 75(10), 1431-1433, (1999).
[55] R. N. Bhattacharya, H. Wiesner, T. A. Berens, R. J. Matson, J. Keane, K. Ramanathan, A. Swartzlander, A. Mason, and R. N. Noufi, “12.3% Efficient CuIn1− xGaxSe2‐Based Device from Electrodeposited Precursor.” Journal of the Electrochemical Society, 144(4), 1376-1379, (1997).
[56] H. C. Huang and C. S. Lin, “Electrodeposition of Compact Copper Indium Diselenide in a Stable Chloride Bath.” Journal of the Electrochemical Society, 160(2), H113-H120, (2013).
[57] M. Ganchev, J. Kois, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A. Tiwari, “Preparation of Cu(In,Ga)Se2 layers by selenization of electrodeposited Cu–In–Ga precursors.” Thin Solid Films, 511, 325-327, (2006).
[58] Y. Q. Lai, F. T. Liu, Z. Zhang, J. Liu, Y. Li, S. S. Kuang, J. Li and Y. X. Liu, “Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films.” Electrochimica Acta, 54(11), 3004-3010, (2009).
[59] H. M. Pathan and C. D. Lokhande, “Chemical deposition and characterization of copper indium diselenide (CISe) thin films.” Applied Surface Science, 245(1), 328-334, (2005).
[60] B. Basol, “Technique For Preparing Precursor Films And Compound Layers For Thin Film Solar Cell Fabrication And Apparatus Corresponding Thereto.” U.S. Patent 11/462,685, (2006).
[61] T. J. Whang, M. T. Hsieh, Y. C. Kao and S. J. Lee, “A study of electrodeposition of CuInSe2 thin films with triethanolamine as the complexing agent.” Applied Surface Science, 255(8), 4600-4605, (2009).
[62] R. Ugarte, R. Schrebler, R. Cordova, E. A. Dalchiele and H. Gomezb, “Electrodeposition of CuInSe2 thin films in a glycine acid medium.” Thin Solid Films, 340(1), 117-124, (1999).
[63] H. C. Huang, C. S. Lin, F. J. Chen and W. C. Li, “Direct observation of the electrocrystallization of compound CuInSe2 during the early stages of deposition.” Electrochimica Acta, 97, 244-252, (2013).
[64] E. Saucedo, C. M. Ruiz, E. Chassaing, J. S. Jaime-Ferrer, P. P. Grand, G. Savidand and V. Bermudez, “Phase evolution during CuInSe2 electrodeposition on polycrystalline Mo.” Thin Solid Films, 518(14), 3674-3679, (2010).
[65] M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions. (1974).
[66] A. M. Fernandez and R. N. Bhattacharya, “Electrodeposition of CuIn1−xGaxSe2 precursor films: optimization of film composition and morphology.” Thin Solid Films, 474(1), 10-13, (2005).
[67] D. D. Shivagan, P. J. Dale, A. P. Samantilleke and L. M. Peter, “Electrodeposition of chalcopyrite films from ionic liquid electrolytes.” Thin Solid Films, 515(15), 5899-5903, (2007).
[68] S. Niki, M. Contreras, I. Repins, M. Powalla K. Kushiya, S. Ishizuka and K. Matsubara, “CIGS absorbers and processes.” Progress in Photovoltaics: Research and Applications, 18(6), 453-466, (2010).
[69] F. W. Mackison, L. J. Partridge and R. S. Stricoff, Occupational Health Guidelines for Chemical Hazards. (1981).
[70] F. Jiang and J. Feng, “Effect of temperature on selenization process of metallic Cu–In alloy precursors.” Thin Solid Films, 515(4), 1950-1955, (2006).
[71] J. Bekker, V. Alberts and M. J. Witcomb, “Influence of selenization techniques on the reaction kinetics of chalcopyrite thin films.” Thin Solid Films, 387(1), 40-43, (2001).
[72] F. O. Adurodija, M. J. Carter and R. Hill, “Solid-liquid reaction mechanisms in the formation of high quality CuInSe2 by the Stacked Elemental Layer (SEL) technique.” Solar Energy Materials and Solar Cells, 37(2), 203-216, (1995).
[73] F. O. Adurodija, M. J. Carter and R. Hill, “Synthesis and characterization of CuInSe2 thin films from Cu, In and Se stacked layers using a closed graphite box.” Solar Energy Materials and Solar Cells, 40(4), 359-369, (1996).
[74] D. S. Albin, J. R. Tuttle and R. Noufi, “The formation of large-grain CulnSe2 films by selenization by high-rate Se transport under moderate vacuum conditions.” Journal of Electronic Materials, 24(4), 351-357, (1995).
[75] M. Gratzel, “Photoelectrochemical cells.” Nature, 414(6861), 338-344, (2001).
[76] N. B. Chaure, J. Young, A. P. Samantilleke and I. M. Dharmadasa, “Electrodeposition of p–i–n type CuInSe2 multilayers for photovoltaic applications.” Solar Energy Materials and Solar Cells, 81(1), 125-133, (2004).
[77] N. B. Chaure, A. P. Samantilleke, R. P. Burton, J. Young and I. M. Dharmadasa, “Electrodeposition of p+, p, i, n and n+-type copper indium gallium diselenide for development of multilayer thin film solar cells.” Thin Solid Films, 472(1), 212-216, (2005).
[78] H. C. Huang, C. S. Lin and W. C. Chang, “Electrodeposition of CIS films on the Mo back electrodes with different crystallinities.” Electrochimica Acta, 75, 20-27, (2012).
[79] A. G. Munoz, S. B. Saidman and J. B. Bessone, “Electrodeposition of indium onto vitreous carbon from acid chloride solutions.” Journal of the Electrochemical Society, 146(6), 2123-2130, (1999).
[80] H. C. Huang, “Material characteristics, growth control, electrocrystallization behaviors of the electrodeposited CuInSe2 used for solar cell applications.” National Taiwan University, (2013).
[81] M. Zhang, H. Ding, Y. Gao and C. W. Tang, “Organic Schottky barrier photovoltaic cells based on MoOx/C 60.” Applied Physics Letters, 96(18), 183301-183301, (2010).
[82] T. S. Sian and G. B. Reddy, “Optical, structural and photoelectron spectroscopic studies on amorphous and crystalline molybdenum oxide thin films.” Solar Energy Materials and Solar Cells, 82(3), 375-386, (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57574-
dc.description.abstractCuInxGa(1-x)Se2/CuInSe2是目前為薄膜太陽能電池中較為有競爭力的一種太陽能電池材料,其擁有高的光電轉換效率、良好的吸收係數和較寬的吸收光譜。本論文將以電化學沉積法製備CuInSe2吸收層並探討熱處理製程的影響。
實驗分成兩個部分,第一部分是電化學沉積的探討,將利用定電位單槽電鍍同時電鍍三元元素,直接生成合乎劑量比的CuInSe2吸收層,因電鍍電位在-0.6 < E < -0.7 V(vs. SCE)範圍,此時Mo基板的催氫還原效應會導致表面形貌的不均。因此,實驗將以三種Mo基板的前處理鈍化Mo基板表面,分別為酸浸、空氣中加熱、濺鍍通氧鈍化。實驗結果為酸浸和空氣中加熱鈍化方法比較好控制,而且在後續電鍍製程能夠得到較為平整的CuInSe2吸收層,濺鍍通氧鈍化由於電阻過高,導致後續電鍍製程CuInSe2吸收層較薄。
第二部分則是探討初鍍CuInSe2吸收層的熱處理製程,由於前面實驗已經可以得到平整,且合乎劑量比的吸收層,因此嘗試避開硒化製程,而在初鍍CuInSe2吸收層表面,以溶膠凝膠法和浸泡塗佈法製備一層SiO2,透過保護的方式進行熱處理,另一方面則是以硒化製程進行熱處理,探討硒顆粒的重量、溫度對於熱處理的影響。前部分的實驗可以在500℃、20分鐘的熱處理時間,得到良好的CuInSe2吸收層,但是因電鍍製程本身所含的空缺較多,而導致電性變成簡併半導體而失敗。而後在硒化製程中,可以在足夠硒元素、550℃、40分鐘得到顆粒大小約為2 μm的良好CuInSe2吸收層,並以光電化學法評估其電性為p-type半導體。在比較不同平整度的初鍍CuInSe2吸收層對硒化製程後的影響,可以得知需要有足夠平整的CuInSe2吸收層,對於後續熱處理是極為重要的。
zh_TW
dc.description.abstractCuInxGa(1-x)Se2/CuInSe2 based solar cells have been reported with better competitiveness in the generation of thin film solar cells duo to its high photoelectron transfer efficiency, good absorption coefficient and board absorption spectrum. This study thus focuses on the heat treatment of CuInSe2 absorber layer manufactured byelectrodeposition.
The experiment is divided into two parts. The first part is the manufacture of CuInSe2 layer with electrodeposition process. The stoichiometric CuInSe2 absorb layer is electroplated in a single solution system at a constant potential. Since the CuInSe2 reduction potential is closed to the H2 discharge. Creating a passivated Mo surface for retarding H2 bubble formation and getting a smooth, compact CuInSe2 structure are important Therefore, there are three approaches in this study, to passivate the molybdenum matrix for avoiding H2 reduction and current concentration effect by acid immersion, oxidization in heated air and aerating oxygen in the end of Mo matrix sputtering. The surface morphology of CuInSe2 absorb layer can be easily smoothed and controlled by the acid immersion and oxidization in heated air pre-treatment of the Mo matrix. However, due to high rate of oxidation of aerating oxygen in sputtering, the resistance of the matrix is much higher than the other two methods which results in insufficient thickness CuInSe2 layer in the following electroplating process.
Second part is the research of the heat treatment of electrodeosited CuInSe2 layer. In the first part experiment, a smooth and stoichiometric CuInSe2 can be well-control. A new heat treatment is attempted, that is, a SiO2 coating formed by Sol-gel dipping process protects the CuInSe2 during heat treatment without selenium atmosphere. On the other hand, the selenization treatment is also a important direction in this study, considering the influence of amount of selenium, temperature and time on selenizaiton. In the front part of research, it can have a almost good cross-sectional morphology after 20 min heat treatment at 500℃ but it also has electric property problem due to vacancy defects during electroplating. In selenizaition research, it can have a pretty good morphology with enough amount of selenium after 40 min heat treatment at 550℃. Moreover, a p-type and 2μm-thickness absorb layer with the photoelectrochemical cell testing is fabricated in the selenizaition heat treatment. At the end, contrasting the different smoothness electrodeposited CuInSe2 layer during the heat treatment, it was found that the smoothness during electrodepostion is important for manufacturing good CuInSe2 absorber layer during heat treatment.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:52:12Z (GMT). No. of bitstreams: 1
ntu-103-R01527005-1.pdf: 13709124 bytes, checksum: 2c385284cf805ecc269cbf1eb9259ce1 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 #
誌謝 I
中文摘要 II
Abstract III
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 背景資料和文獻回顧 3
2-1 太陽能電池簡介 3
2-1-1 太陽能電池基礎原理 3
2-1-2 太陽能電池種類 7
2-2 CIS/CIGS薄膜太陽能電池 13
2-2-1 材料結構和光學特性 13
2-2-2 Cu-In-Se三元相圖(phase diagram) 16
2-2-3 CIS/CIGS元件結構 18
2-2-4 CIS/CIGS吸收層的製程介紹 21
2-3 電化學沉積原理 24
2-3-1 CIS/CIGS電鍍特性 26
2-3-2 硒化處理 29
2-4 光電化學法(Photoelectrochemical cells) 33
第三章 實驗方法與步驟 35
3-1 實驗流程圖 35
3-2 CIS太陽能電池的製備 36
3-2-1 Mo背電極製備 36
3-2-2 鉬基板電鍍前處理和鈍化處理 36
3-2-3 電鍍CuInSe2薄膜吸收層 38
3-2-4 CuInSe2熱處理製程 39
3-3 量測分析 42
3-3-1 掃描式電子顯微鏡(SEM)和化學組成分析(EDS) 42
3-3-2 X光繞射分析(XRD) 42
3-3-3 拉曼光譜分析(Raman Spectroscopy) 43
3-3-4 光電化學量測(PEC Signal) 43
第四章 結果與討論 44
4-1 濺鍍Mo基板的前處理對電鍍CIS薄膜的影響 44
4-1-1 以溫熱空氣鈍化Mo基板 47
4-1-2 透過酸浸鈍化Mo基板 51
4-1-3 以濺鍍製程在基板表面濺鍍MoOx鈍化層 56
4-2 以SiO2 coating保護CIS薄膜進行熱處理 60
4-2-1 TEOS:H2O:EtOH比例對SiO2塗佈的影響 61
4-2-2 溫度和時間對於CIS吸收層熱處理之探討 66
4-3 CIS吸收層硒化處理 73
4-4 電鍍形貌對於CIS硒化熱處理的影響 80
第五章 結論 84
第六章 未來展望 86
參考文獻 88
dc.language.isozh-TW
dc.title以電鍍法製備銅銦硒太陽能吸收層及熱處理製程之探討zh_TW
dc.titleThe Heat Treatment Research of CuInSe2 Solar Cell Absorber Layer by Electrodeposition Processen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林景崎,黃清安,楊聰仁,黃憲中
dc.subject.keyword銅銦硒/銅銦鎵硒,硒化處理,太陽能電池,薄膜,電化學,電鍍,zh_TW
dc.subject.keywordCIS,CIGS,Selenization,Solar cell,Thin film,Electrochemical,Electroplating,en
dc.relation.page97
dc.rights.note有償授權
dc.date.accepted2014-07-22
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
13.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved