Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57542
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶瑞(Ching-Ray Chang)
dc.contributor.authorHuei-Ru Fuhen
dc.contributor.author傅薈如zh_TW
dc.date.accessioned2021-06-16T06:50:42Z-
dc.date.available2017-09-08
dc.date.copyright2015-09-08
dc.date.issued2014
dc.date.submitted2014-07-24
dc.identifier.citation[1] Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, and E. Saitoh, Nature, 464, 262-266 (2010).
[2] F. Maccherozzi, M. Sper, G. Panaccione, J. Mina’r, S. Polesya, H. Ebert, U. Wurstbauer, M. Hochstrasser, G. Rossi, G. Woltersdorf, W. Wegscheider, and C. H. Back,
[3]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, Appl. Phys. Lett. 69, 363 (1996).
[4] tomasz Dietl, Nature Materials, 9, 965-974 (2010).
[5] Y. Fukuma, H. Asada, S. Miyawaki, T. Koyanagi, S. Senba, K. Goto, and H. Sato, Carrier-induced ferromagnetism in Ge0.92Mn0.08Te epilayers with a Curie temperature up to 190 K. Appl. Phys. Lett. 93, 252502 (2008).
[6] D. Ghosh, M. De, and S. K. De, Phys. Rev. B, 70, 115211 (2004)
[7] K. Uchida, J. Xiao, H. Adachi, J. Ohe4, S. Takahashi, J. Ieda, T. Ota, Y. Kajiwara, H. Umezawa, H. Kawai, G. E.W. Bauer, S. Maekawa and E. Saitoh, Nature Materials, 9, 894.897 (2010).
[8] G.V. Lashkarev, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, O.I. Dmitriev, P.E. Butorin, Z.D. Kovalyuk, R. Szymczak, A. Slawska-Waniewska, N. Nedelko, R. Yakiela, A.M. Balagurov, A.I. Beskrovnyy, and W. Dobrowolski, Semiconductor Physics, Quantum Electronics Optoelectronics, 14, 263-268, (2011).
[9] D. Ghosh, M. De, and S. K. De, Phys. Rev. B, 70, 115211 (2004)
[10] B. T. Matthias, R. M. Bozorth, J. H. Van Vleck, Phys. Rev. Lett., 7, 160, (1961)
[11] Y. D. Ma, Y. Dai,W.Wei, C. N. Niu, L. Yu, B. B. Huang, First-Principles Study of the Graphene@MoSe2 Heterobilayers. J. Phys. Chem. C, 115, 20237-20241 (2011).
[12] A. Splendiani, L. Sun, Y. Zhang, T. Kim, J. Li, C. Y. Chim, G. Galli, F. Wang, Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 10, 1271V1275 (2010).
[13] E. A. Marseglia, Transition Metal Dichalcogenides and Their Intercalates. Int. Rev. Phys. Chem., 3, 177V216 (1983).
[14] C. Ataca, H. Sahin, and S. Ciraci, Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure, J. Phys. Chem. C, 116, 8983-8999 (2012).
[15] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, Nature Chemistry, 5, 263-275 (2013).
[16] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschl, Phys. Rev. B, 84, 153402 (2011).
[17] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-Layer MoS2 Transistors. Nat. Nanotechnol., 6, 147-150 (2011).
[18] A.Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).
[19] D. Xiao, G. B. Liu, W. X. Feng, X. D. Xu, and W. Yao, Phys. Rev. Lett., 168, 196802 (2010).
[20] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol., 7, 699-712 (2012)
[21] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic Few-Layered VS2 Ultrathin
Nanosheets: High Two-Dimensional Conductivity for In- Plane Supercapacitors. J. Am. Chem. Soc., 133, 17832- 17838 (2011).
[22] J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, Two-Dimensiona lNanosheets Producedby Liquid Exfoliation of Layered Materials. Science, 331, 568-571 (2011).
[23] D. Q. Gao, Q. X. Xue, X. Z. Mao, W. X. Wang, Q. Xu and D. S. Xue J. Mater. Chem. C, 1, 5909 (2013).
[24] H. Zhang, L. M. Liu and W. M. Lau, Dimension dependent phase transition and magnetic properties of VS2., J. Mater. Chem. A, 11, 10821-10828 (2013).
[25]劉雲平博士論文,以第一原理計算研究鍶與碳族元素為基底的雙鈣鈦礦中的半金屬材料,國立台灣師範大學物理學研究所,中華民國102年5月
[26] J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884, (1983)
[27]J. C. Slater, Wavefunction in a periodic potential, Phys. Rev. 51, 846 (1937)
[28] G. Kresse and J. Hafner, Phys. Rev. B, 48, 13115 (1993)
[29] G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B. 54. 11169 (1996)
[30]S. Yip. Handbook of Materials Modeling, 93-119, Springer, (2005)
[31]V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
[32] A. I. Liechtenstenin, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
[33] V. I. Anisimov, F. Aryasetiawan, and A. I. Liechtenstenin, J. Phys: Condens. Matter, 9. 767, (1997)
[34]H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403, (2004)
[35] D. E. Eastman, F. Holtzberg, and S. Methfessel, Photoemission Studies of the Electronic Structure of EuO, EuS, EuSe, And GdS, Phys. Rev. Lett., 23, 226, (1969).
[36] Paul Lim, magnetic semiconductor and spin transistor: an introduction, coursework for AP273, Stanford University, spring, (2007).
[37] D. E. Shai, A. J. Melville, J.W. Harter, E. J. Monkman, D.W. Shen, A. Schmehl, D. G. Schlom, and K. M. Shen1, Temperature Dependence of the Electronic Structure and Fermi-Surface Reconstruction of Eu1_xGdxO through the Ferromagnetic Metal-Insulator Transition, Phys. Rev. Lett., 108, 267003, (2012).
[38] Story, T., Galazka, R. R., Frankel, R. B. & Wolff, P. A. Carrier-concentrationinduced ferromagnetism in PbSnMnTe. Phys. Rev. Lett., 56, 777–779 (1986).
[39] Tomasz Dietl, a ten-year perspective on dilute magnetic semiconductors and oxides, nature material, 9, 965-974, (2010)
[40] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno & D. D. Awschalom, Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature, 402, 790–792 (1999).
[41] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno & K. Ohtani, Electric-field control of ferromagnetism. Nature, 408, 944–946 (2000).
[42] Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature, 428, 539–541 (2004).
[43] A. Bonanni, In: Abstract book of the XXXVIII Intern. School and Confer. on Physics of Semiconductors “Jaszowiec 2009”, Krynica-Zdroj, Poland, 2009, p. 80.
[44] G.V. Lashkarev, V.I. Sichkovskyi, M.V. Radchenko, P. Aleshkevych, O.I. Dmitriev, P.E. Butorin, Z.D. Kovalyuk, R. Szymczak, A. Slawska-Waniewska, N. Nedelko, R. Yakiela, A.M. Balagurov, A.I. Beskrovnyy, W. Dobrowolski, Diluted magnetic layered semiconductor InSe:Mn with high Curie temperature, Semiconductor Physics, Quantum Electronics & Optoelectronics, 14, 3, 263-268, (2011).
[45]N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6, Adv. Mater., 17, 2225 (2005).
[46]R. I. Dass, J. Q. Yan, J. B. Goodenough, Phys. Rev. B, 68, 064415 (2003).
[47]Yun-Ping Liu, Ph.D. thesis, First-Principles studies of Half-Metallic Materials in Sr and IV-Group Element Based Double Perovskites Structure Compounds, May, 2013.
[48] J. Feng, X. Sun, C. Wu, L. Peng, C. Lin, S. Hu, J. Yang, and Y. Xie, Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors. J. Am. Chem. Soc., 133, 17832-17838 (2011).
[49]J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, Two-Dimensiona lNanosheets Producedby Liquid Exfoliation of Layered Materials. Science, 331, 568-571 (2011).
[50]D. Q. Gao, Q. X. Xue, X. Z. Mao, W. X. Wang, Q. Xu and D. S. Xue J. Mater. Chem. C, 1, 5909 (2013).
[51] J. Feng, L. Peng, C. Wu, X Sun, S. Hu, C. Lin, J. Dai, J. Yang, Y. Xie, Adv. Mater., 24, 1969, 2012.
[52] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen and M. Chhowalla, ACS Nano, 6, 7311 (2012).
[53] H. Zhang, L. M. Liu and W. M. Lau, Dimension-dependent phase transition and magnetic properties of VS2., J. Mater. Chem. A, 1, 10821-10828 (2013).
[54] N. D. Boscher, C. S. Blackman, C. J. Carmalt, I. P. Parkin, and A. G. Prieto. Atmospheric pressure chemical vapour deposition of vanadium diselenide thin films. Appl. Surf. Sci. 253, 6041-6046, (2007).
[55]R. Guzman, P. Lavela, J. Morales, J.L. Tirado, J. Appl. Electrochem. 27, 1207 (1997).
[56]A.H. Thompson, J.C. Scanlon, C.R. Symon, Solid State Ionics, 1, 47, (1980).
[57]A. Vinokurov, A. V. Tyurin, A. L. Emelina, K. S. Gavrichev, V. P. Zlomanov, Inorganic Materials, 45, 480-485, (2009).
[58] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
[59] P. E. Blochl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[60] G. Kresse, and J. Hafner, Phys. Rev. B 48, 13115 (1993); G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).
[61] A. Petukhov, I. Mazin, L. Chioncel, and A. Lichtenstein, Phys. Rev. B 67, 153106 (2003).
[62] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
[63] Manish Chhowalla1, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh and Hua Zhang, Nature Chemistry, 5, 263-275, (2013)
[64] N. S. Rogado, J. Li, A. W. Sleight, and M. A. Subramanian, Adv. Mater. (Weinheim, Ger.) 17, 2225 (2005).
[65] R.I. Dass, J.-Q. Yan, J.B. Goodenough, Phys. Rev. B 68 064415 (2003).
[66] H. Guo, J. Burgess, S. Street, A. Gupta, T. G. Calvarese, and M. A. Subramanian, Appl. Phys. Lett. 89, 022509 (2006).
[68] M. Hashisaka, D. Kan, A. Masuno, M. Takano, Y. Shimakawa, T. Terashima, and K. Mibu, Appl. Phys. Lett. 89, 032504 (2006).
[69] M. P. Singh, C. Grygiel, W. C. Sheets, Ph. Boullay, M. Hervieu, W. Prellier, B. Mercey, Ch. Simon, and B. Raveau, Appl. Phys. Lett. 91, 012503 (2007).
[70] M. N. Iliev, H. Guo, and A. Gupta, Appl. Phys. Lett. 90, 151914 (2007).
[71] Hena Das, Umesh V. Waghmare, T. Saha-Dasgupta, and D. D. Sarma, Phys. Rev. Lett. 100, 186402 (2008).
[72] M. Azuma, K. Takata, T. Saito, S. Ishikawa, Y. Shimakawa, M. Takano, J. Am. Chem. Soc. 127 8889 (2005).
[73] J.B. Goodenough, Phys. Rev. 100 (1955) 564.
[74] J. Kanamori, Phys. Chem. Solids 10 (1959) 87.
[75] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943 (1991).
[76] A. I. Liechtenstenin, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52, R5467 (1995).
[77] H. T. Jeng, G. Y. Guo, and D. J. Huang, Phys. Rev. Lett. 93, 156403 (2004).
[78] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 477, 3865 (1996).
[79] Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, Acs. Nano, 6, 1695V1701 (2012).
[80]Y. D. Ma, Y. Dai,W.Wei, C. N. Niu, L. Yu, B. B. Huang, First-Principles Study of the Graphene@MoSe2 Heterobilayers. J. Phys. Chem. C, 115, 20237-20241 (2011).
[81] D. Q. Gao, Q. X. Xue, X. Z. Mao, W. X. Wang, Q. Xu and D. S. Xue J. Mater. Chem. C, 1, 5909 (2013).
[82] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschl, Phys. Rev. B, 84, 153402 (2011).
[83] T. Hynninen, H. Raebiger, J. von Boehm and A. Ayuela, Appl. Phys. Lett. 88, 122501 (2006)
[84] K. Sato, P. H. Dederics, and H. Katayama-Yoshida, Europhys. Lett., 61, 403-408 (2003)
[85]Y. D. Ma, Y. Dai, M. Guo, C. W. Niu, Y. T. Zhu, and B. B. Huang, Acs. Nano, 6, 1695-1701 (2012).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57542-
dc.description.abstract在此篇論文中我們研究兩種可能的磁性半導體,第一種為La為主的雙鈦鈣結構,第二種為二維的蜂巢式結構。我們是根據密度泛涵理論做結構最佳化計算利用VASP為計算軟體。由四種磁相態出發:鐵磁態(FM)、亞鐵磁態(FiM)、反鐵磁態(AFM)、無磁性(NM),使用廣義梯度近似(GGA)以及考慮庫倫排斥效應(GGA+U)。
第一章,我們簡單介紹磁性半導體的歷史以及研究發展,以及我們可能找到的磁性半導體候選者。
第二章,我們簡單介紹密度泛涵理論以及計算方法,包括Born-Oppenheimer 近似Hohenberg-Kohn 理論, Kohn-Sham 方程式以及交換關聯效應、局域密度近似與廣義梯度近似。使用的計算軟體為VASP,其使用平面波展開方琺來計算,並介紹庫倫電子關聯效應。
第三章我們介紹磁性半導體的一些特徵以及特性。我們也簡介了第一個發現為磁性半導體材料EuO。另外,在本文中也介紹,傳統半導體材料中添加過度金屬所形成的diluted magnetic semiconductors (DMSs).之後,我們提到了雙鈦鈣結構中所形成的相變溫度接近室溫的磁性半導體材料。
第四章我們簡介了兩類可能的磁性半導體材料,第一類為La2MM’O6 (M, M’= transitionmetal ions),第二類為La2FeCoO6,、La2FeIrO6、La2FeRhO6。這兩類的磁性半導體材料是由於superexchange機制所形成。在考慮庫倫排斥力的效應下,這兩類的磁性半導體性質仍然維持。
第五章介紹了二維蜂巢式的結構以及所找到的磁性半導體,在考慮庫倫排斥力的效應下依然存在。
  第六章給予總結,並希望我們找到的磁性半導體材料對未來實驗合成有幫助。
關鍵字:密度泛涵理論,第一原理計算,磁性半導體,雙鈦鈣結構,二維蜂巢式結構
zh_TW
dc.description.abstractIn this thesis, we investigated two possible candidates series of magnetic semiconductor (MS) in the La-based double perovskites structure and 2D honeycomb structure. The calculation is based on the density functional theory (DFT) with full structure optimization by generalized gradient approximation (GGA) and plus the onsite Coulomb interaction (GGA+U) scheme. The projector augmented wave (PAW) method within conjugate-gradient method implemented in VASP package.
In chapter 1, we briefly introduced the previous researches of MS compounds and their important applications in spintronic field.
In chapter 2, we introduced the density functional theory (DFT) and computational method. Firstly, we introduced the Born-Oppenheimer approximation. Based on the Born-Oppenheimer approximation, the DFT introduce later. The DFT divide into three part, the Hohenberg-Kohn theorems, the Kohn-Sham equations, the Exchange correlation functional, local (spin) density approximation and the GGA, as well as computational method we used. Sencondly , we introduced the PAW method within VASP package and the GGA+U method.
In chapter 3, we introduced the characteristics and properties of MS materials. Also, we review the MS compounds of first discovery in EuO compound and the diluted magnetic semiconductors (DMSs). Latter, we give a detail discussion about double perovskites structure and the initial magnetic states configurations. Moreover, we introduce two-dimension transition metal dichalcogneides structure with their recently experimental and theoretical research results. Finally, the calculation procedure with a diagram and explain the calculation detailed and setting parameters.
In chapter 4, for La-based double perovskites La2MM’O6 (M, M’= transitionmetal ions), we classified the possible MS compound into 2 groups according to the electronic configuration of the MM’ ion pairs. In Group1 Ferromagnetic Insulator (FM-IS): La2NiM’O6 (M’= Mn, Tc, Re, Ti, Zr, and Hf). In Group2 Ferromagnetic Semiconductor (FM-SE): La2FeB’O6 (M’= Co, Rh, and Ir). We calculated energy difference for four magnetic states which are ferromagnetic, ferrimagnetic, antiferromagnetic, and non-magnetic states in both GGA and GGA+U schemes. The FM-IS observed in La2NiMO6 (M = Mn, Tc, and Re) was most likely a mixture of high spin (HS) and low spin (LS) states; the electrons transferred from the filled LS Ni eg states to the half-filled HS Mn (Tc). On the other hand, the FM-IS in La2NiMO6 (M = Ti, Zr, and Hf) was caused by the electron transfer from the half-filled LS Ti (Zr and Hf) eg orbital of HS Ni to the empty eg orbital of LS Ti (Zr, Hf). The FM insulating state of La2NiMO6 (M = Mn. Tc, Ti, Zr, and Hf) remained the same, whereas it changed from metal to insulator for La2NiReO6 based on the generalized gradient approximation +U calculation. The La2FeCoO6 is a potential candidate for FM-SE whereas La2FeIrO6 and La2FeRhO6 show energy difference about 9.0 meV, which is not large, but still indicates a substantial preference toward an antiferromagnetic (AFM) state. For the GGA+U scheme, La2FeCoO6 remains a stable FM semiconductor, whereas La2FeRhO6 and La2FeIrO6 show the FM and AFM states of which are degenerate with each other.

In chapter 5, we discussed ferromagnetic property and compared with the experimental result. By suppression of the GGA+U, the energy gap is expected to be large and approach to 0.65 eV of VSe2 monolayer.
In chapter 6, we will make a summary of our work. It includes the research method, the main results and the mechanism of causing MS compounds.
We hope that this thesis on the searching MS compounds in double perovskites and 2D honeycomb structures are useful for experimental research and bring up the research upsurge of MS materials.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:50:42Z (GMT). No. of bitstreams: 1
ntu-103-D99222019-1.pdf: 3438292 bytes, checksum: 8ff3b437e21a8a2700723d08bee17b37 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsContents
致謝............................................. I
中文摘要及關鍵字................................... II
英文摘要及關鍵字.................................. III
圖目錄............................................ V
表目錄........................................ VIII
1 Introduction.................................. 1
2 Density Functional Theory (DFT) and computational methods .................................................. 4
2.1 Density Functional Theory (DFT) ............. 4
2.1.1 Hohanberg-Kohntheorems .................. 4
2.1.2 Kohn-Shamequations ...................... 7
2.1.3 Exchange-correlationfunctionals ......... 12
2.2 Projector Augmented Wave (PAW) method (VASP package) ................................................. 12
2.3 L(S)DA(GGA)+U method …………..................... 14
3 Magnetic Semiconductor (MS) Materials.......... 15
3.1 What is MS Materials? ....................... 15
3.2 The review of MS compounds research.......... 16
3.3 Double perovskites structure and magnetic phase............................................. 19
3.3.1 Double perovskites structure............ 19
3.3.2 Structural optimization................. 20
3.3.3 Magnetic States......................... 21
3.4 Two-dimension Transition Metal Dichalcogenides (TMDs) Structure........................................ 22
3.4.1 2D TMDs structure....................... 22
3.5 Calculation procedure........................ 24
4 MS Materials in La2MM′O6 (M/M′ = transition metal) of double perovskites structure..................... 27
4.1 The searching groups......................... 27
4.2 Ferromagnetic Insulator: La2NiMO6 (M=Mn, Tc, Re, Ti, Zr, and Hf ).......................................... 28
4.2.1 Stable phase calculation ................... 28
4.2.2 Electronic structure and magnetic properties........................................ 30
4.2.3 Exchange Correlation Correction (GGA+U) calculations..................................... 39
4.3 Ferromagnetic Semiconductor: La2FeMO6 (M=Co, Rh and Ir ) ................................................. 42
4.3.1 Stable phase calculation .................. 42
4.3.2 Electronic structure and magnetic properties........................................ 45
4.3.3 Exchange Correlation Correction (GGA+U) calculations….................................... 50
4.3.4. Strain Effect and the Curie Temperature calculations..................................... 51
5 MS Materials in 2D TMDs of honeycomb structure........................................ 55
5.1 MS Materials in 2D TMDs of honeycomb structure........................................ 55
5.1.1 The group-VI dichalcogenides monolayer structure........................................ 55
5.1.2 Energy gap properties ..................... 56
5.1.3 Orbital decomposed and Spin decomposed bandstructure.................................... 56
5.1.4 ani-isotropic energy....................... 61
6 Summaries...................................... 64
Reference........................................ 67
Publication List................................. 76
dc.language.isoen
dc.subject密度泛涵理論zh_TW
dc.subject第一原理計算zh_TW
dc.subject磁性半導體zh_TW
dc.subject雙鈦鈣結構zh_TW
dc.subject二維蜂巢式結構zh_TW
dc.subjectmagnetic semiconductoren
dc.subject2D honeycomb structureen
dc.subjectDFT theoryen
dc.subjectfirst principlesen
dc.subjectdouble perovkitesen
dc.title以第一原理研究雙鈦鈣及二維蜂巢式結構中的新型磁性半導體zh_TW
dc.titleFirst principles studies of New type Magnetic Semiconductor in Double Perovskites Structure and 2-Dimension Honeycomb Structure Compoundsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.coadvisor王銀國(Yin-Kuo Wang)
dc.contributor.oralexamcommittee胡崇德(Chong-Der Hu),鄭弘泰(Horng-Tay Jeng),關肇正(Chao-Cheng Kaun),陳穎叡(Yiing-Rei Chen)
dc.subject.keyword密度泛涵理論,第一原理計算,磁性半導體,雙鈦鈣結構,二維蜂巢式結構,zh_TW
dc.subject.keywordDFT theory,first principles,magnetic semiconductor,double perovkites,2D honeycomb structure,en
dc.relation.page78
dc.rights.note有償授權
dc.date.accepted2014-07-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
3.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved