請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57539完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 邱奕鵬(Yih-Peng Chiou) | |
| dc.contributor.author | Chen Shuai | en |
| dc.contributor.author | 帥真 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:50:33Z | - |
| dc.date.available | 2022-07-20 | |
| dc.date.copyright | 2020-07-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-21 | |
| dc.identifier.citation | [1] M. I. Razzak, S. Naz, and A. Zaib, 'Deep learning for medical image processing: Overview, challenges and the future,' Classification in BioApps, pp. 323-350: Springer, 2018. [2] L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, “Age-related macular degeneration,” The Lancet, vol. 379, no. 9827, pp. 1728-1738, 2012. [3] S. Farsiu, S. J. Chiu, R. V. O'Connell, F. A. Folgar, E. Yuan, J. A. Izatt, C. A. Toth, and A.-R. E. D. S. A. S. D. O. C. T. S. Group, “Quantitative classification of eyes with and without intermediate age-related macular degeneration using optical coherence tomography,” Ophthalmology, vol. 121, no. 1, pp. 162-172, 2014. [4] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,” IEEE reviews in biomedical engineering, vol. 3, pp. 169-208, 2010. [5] N. Jain, S. Farsiu, A. A. Khanifar, S. Bearelly, R. T. Smith, J. A. Izatt, and C. A. Toth, “Quantitative comparison of drusen segmented on SD-OCT versus drusen delineated on color fundus photographs,” Investigative ophthalmology visual science, vol. 51, no. 10, pp. 4875-4883, 2010. [6] G. S. Hageman, P. J. Luthert, N. V. Chong, L. V. Johnson, D. H. Anderson, and R. F. Mullins, “An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration,” Progress in retinal and eye research, vol. 20, no. 6, pp. 705-732, 2001. [7] Z. Yehoshua, P. J. Rosenfeld, G. Gregori, W. J. Feuer, M. Falcão, B. J. Lujan, and C. Puliafito, “Progression of geographic atrophy in age-related macular degeneration imaged with spectral domain optical coherence tomography,” Ophthalmology, vol. 118, no. 4, pp. 679-686, 2011. [8] D. C. DeBuc, “A review of algorithms for segmentation of retinal image data using optical coherence tomography,” Image Segmentation, vol. 1, pp. 15-54, 2011. [9] A. Baghaie, Z. Yu, and R. M. D’Souza, “State-of-the-art in retinal optical coherence tomography image analysis,” Quantitative imaging in medicine and surgery, vol. 5, no. 4, pp. 603, 2015. [10] K. Vermeer, J. Van der Schoot, H. Lemij, and J. De Boer, “Automated segmentation by pixel classification of retinal layers in ophthalmic OCT images,” Biomedical optics express, vol. 2, no. 6, pp. 1743-1756, 2011. [11] A. Lang, A. Carass, M. Hauser, E. S. Sotirchos, P. A. Calabresi, H. S. Ying, and J. L. Prince, “Retinal layer segmentation of macular OCT images using boundary classification,” Biomedical optics express, vol. 4, no. 7, pp. 1133-1152, 2013. [12] L. Fang, D. Cunefare, C. Wang, R. H. Guymer, S. Li, and S. Farsiu, “Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search,” Biomedical optics express, vol. 8, no. 5, pp. 2732-2744, 2017. [13] J. Hamwood, D. Alonso-Caneiro, S. A. Read, S. J. Vincent, and M. J. Collins, “Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers,” Biomedical optics express, vol. 9, no. 7, pp. 3049-3066, 2018. [14] A. G. Roy, S. Conjeti, S. P. K. Karri, D. Sheet, A. Katouzian, C. Wachinger, and N. Navab, “ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks,” Biomedical optics express, vol. 8, no. 8, pp. 3627-3642, 2017. [15] F. G. Venhuizen, B. van Ginneken, B. Liefers, M. J. van Grinsven, S. Fauser, C. Hoyng, T. Theelen, and C. I. Sánchez, “Robust total retina thickness segmentation in optical coherence tomography images using convolutional neural networks,” Biomedical optics express, vol. 8, no. 7, pp. 3292-3316, 2017. [16] S. K. Devalla, P. K. Renukanand, B. K. Sreedhar, G. Subramanian, L. Zhang, S. Perera, J.-M. Mari, K. S. Chin, T. A. Tun, and N. G. Strouthidis, “DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images,” Biomedical optics express, vol. 9, no. 7, pp. 3244-3265, 2018. [17] Y. Xu, K. Yan, J. Kim, X. Wang, C. Li, L. Su, S. Yu, X. Xu, and D. D. Feng, “Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy,” Biomedical optics express, vol. 8, no. 9, pp. 4061-4076, 2017. [18] J. Kugelman, D. Alonso-Caneiro, S. A. Read, S. J. Vincent, and M. J. Collins, “Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search,” Biomedical optics express, vol. 9, no. 11, pp. 5759-5777, 2018. [19] X. Sui, Y. Zheng, B. Wei, H. Bi, J. Wu, X. Pan, Y. Yin, and S. Zhang, “Choroid segmentation from optical coherence tomography with graph-edge weights learned from deep convolutional neural networks,” Neurocomputing, vol. 237, pp. 332-341, 2017. [20] M. Chen, J. Wang, I. Oguz, B. L. VanderBeek, and J. C. Gee, 'Automated segmentation of the choroid in EDI-OCT images with retinal pathology using convolution neural networks,' Fetal, Infant and Ophthalmic Medical Image Analysis, pp. 177-184: Springer, 2017. [21] B. Al-Bander, B. M. Williams, M. A. Al-Taee, W. Al-Nuaimy, and Y. Zheng, 'A novel choroid segmentation method for retinal diagnosis using deep learning.' pp. 182-187. [22] D. Alonso-Caneiro, J. Kugelman, J. Hamwood, S. A. Read, S. J. Vincent, F. K. Chen, and M. J. Collins, 'Automatic retinal and choroidal boundary segmentation in OCT images using patch-based supervised machine learning methods.' pp. 215-228. [23] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D. Jackel, 'Handwritten digit recognition with a back-propagation network.' pp. 396-404. [24] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. [25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, 'Imagenet classification with deep convolutional neural networks.' pp. 1097-1105. [26] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. [27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, 'Going deeper with convolutions.' pp. 1-9. [28] K. He, X. Zhang, S. Ren, and J. Sun, 'Deep residual learning for image recognition.' pp. 770-778. [29] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, 'Rethinking the inception architecture for computer vision.' pp. 2818-2826. [30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, 'Inception-v4, inception-resnet and the impact of residual connections on learning.' [31] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, 'Aggregated residual transformations for deep neural networks.' pp. 1492-1500. [32] J. Hu, L. Shen, and G. Sun, 'Squeeze-and-excitation networks.' pp. 7132-7141. [33] B. Zoph, and Q. V. Le, “Neural architecture search with reinforcement learning,” arXiv preprint arXiv:1611.01578, 2016. [34] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, 'Learning transferable architectures for scalable image recognition.' pp. 8697-8710. [35] M. Tan, and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” arXiv preprint arXiv:1905.11946, 2019. [36] J. Long, E. Shelhamer, and T. Darrell, 'Fully convolutional networks for semantic segmentation.' pp. 3431-3440. [37] N. Shibuya. 'Up-sampling with Transposed Convolution,' https://medium.com/activating-robotic-minds/up-sampling-with-transposed-convolution-9ae4f2df52d0. [38] O. Ronneberger, P. Fischer, and T. Brox, 'U-net: Convolutional networks for biomedical image segmentation.' pp. 234-241. [39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436, 2015. [40] C. Olah, “Understanding lstm networks,” 2015. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57539 | - |
| dc.description.abstract | 老年性黃斑部病變(age-related macular degeneration, AMD)是一種常見的眼科疾病,在各個國家中都會引起中心視力的逐漸退化。它的特徵是在黃斑部出現隱節(drusen),並伴有脈絡膜新生血管(choroidal neovascularization, CNV)或地圖狀萎縮(geographic atrophy, GA)。它們的大小,數量和位置可作為疾病進展的生物標記。光學相干斷層掃描(optical coherence tomography, OCT)是獲取視網膜三維影像的一種快速且無創的方法,並且越來越多地用於監測AMD的發作和進展。AMD疾病的嚴重程度很可能由隱節和地圖狀萎縮的定量確定。由於手動分割OCT影像既費時又主觀,因此有必要開發自動圖層分割演算法。本文提出並實現了一種深度學習的OCT影像自動分割方法。利用一種以U-net架構為基礎的語義分割網路加上遞歸神經網路的架構進行分割。實驗結果表明,與其他最新方法相比,該方法大大降低了錯誤率。 | zh_TW |
| dc.description.abstract | Age-related macular degeneration (AMD) is a common eye disease that causes a gradual deterioration of central vision in various countries. It is characterized by the appearance of drusen in the macula, accompanied by choroidal neovascularization (CNV) or geographic atrophy. Their size, number, and location can serve as biomarkers for disease progression. Optical coherence tomography (OCT) is a fast and non-invasive way of obtaining three-dimensional images of the retina and is increasingly used to monitor the onset and progression of AMD. The severity of AMD disease is likely to be determined from the quantification of drusen and geographic atrophy. However, manual segmentation of OCT images is time-consuming and subjective, it is necessary to develop an automatic layer segmentation algorithm. In this paper, we propose and implement a deep learning OCT image automatic segmentation method. Using a U-net-based fully convolutional architecture and a recursive neural network for image segmentation. Experimental results show that compared with other recent methods, this method greatly reduces the error rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:50:33Z (GMT). No. of bitstreams: 1 U0001-2007202016270200.pdf: 10608304 bytes, checksum: 320b7bcebfad6fe4f1ab1e04962c3a39 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 緒論 1 1.1 老年性黃斑部病變 2 1.2 OCT視網膜影像分割 3 Chapter 2 基本原理 5 2.1 卷積神經網路 5 2.1.1 卷積神經網路架構概述 5 2.1.2 卷積神經網路架構 7 2.2 語義分割 20 2.3 遞歸神經網路 25 Chapter 3 方法 27 3.1 OCT數據 27 3.2 OCT影像分割 29 3.2.1 總攬 29 3.2.2 CNN影像辨識加上圖形搜索法 30 3.2.3 U-Net語義分割法 32 3.2.4 U-Net語義分割加上圖形搜索法 34 3.2.5 U-Net加上殘差LSTM語義分割法 35 Chapter 4 結果與討論 37 4.1 定量評估 40 4.2 定性評估 42 4.3 四種架構的比較與討論 52 4.4 U-Net加上殘差LSTM語義分割法 54 Chapter 5 結論 61 REFERENCES 62 | |
| dc.language.iso | zh-TW | |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | U-Net | zh_TW |
| dc.subject | 遞歸神經網路 | zh_TW |
| dc.subject | 長期短期記憶 | zh_TW |
| dc.subject | 語義分割 | zh_TW |
| dc.subject | 醫學影像處理 | zh_TW |
| dc.subject | 光學相干斷層掃描 | zh_TW |
| dc.subject | 眼科 | zh_TW |
| dc.subject | 老年性黃斑部病變 | zh_TW |
| dc.subject | convolutional neural networks | en |
| dc.subject | age-related macular degeneration | en |
| dc.subject | Ophthalmology | en |
| dc.subject | optical coherence tomography | en |
| dc.subject | medical image processing | en |
| dc.subject | semantic segmentation | en |
| dc.subject | long short-term memory | en |
| dc.subject | recurrent neural networks | en |
| dc.subject | U-Net | en |
| dc.title | 利用基於U-Net的卷積神經網路及殘差長短期記憶分割AMD患者的光學相干斷層掃描影像中的視網膜層邊界 | zh_TW |
| dc.title | Automatic Segmentation of Retinal Layer Boundaries in OCT Images of AMD Patients Using U-Net based CNN and Residual LSTM | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 黃升龍(Sheng-Lung Huang),吳育任(Yuh-Renn Wu) | |
| dc.subject.keyword | 卷積神經網路,U-Net,遞歸神經網路,長期短期記憶,語義分割,醫學影像處理,光學相干斷層掃描,眼科,老年性黃斑部病變, | zh_TW |
| dc.subject.keyword | convolutional neural networks,U-Net,recurrent neural networks,long short-term memory,semantic segmentation,medical image processing,optical coherence tomography,Ophthalmology,age-related macular degeneration, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU202001655 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2007202016270200.pdf 未授權公開取用 | 10.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
