請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57528
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張慶瑞(Ching-Ray Chang) | |
dc.contributor.author | Wei-Jia Huang | en |
dc.contributor.author | 黃偉家 | zh_TW |
dc.date.accessioned | 2021-06-16T06:50:03Z | - |
dc.date.available | 2025-07-29 | |
dc.date.copyright | 2020-08-25 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-03 | |
dc.identifier.citation | [1] E. Schrödinger. Discussion of probability relations between separated systems.Mathematical Proceedings of the Cambridge Philosophical Society, 31(4):555–563,1935. [2] E. Schrödinger. Probability relations between separated systems. Mathematical Proceedings of the Cambridge Philosophical Society, 32(3):446–452, 1936. [3] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki.Quantum entanglement. Reviews of modern physics, 81(2):865, 2009. [4] John S Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika,1(3):195, 1964. [5] N. David Mermin. Extreme quantum entanglement in a superposition of macroscopically distinct states. Physical Review Letters, 65(15):1838–1840, 1990. [6] Alain Aspect, Jean Dalibard, and Gérard Roger. Experimental test of bell’s inequalities using timevarying analyzers. Physical Review Letters, 49(25):1804–1807,1982. [7] Lynden K. Shalm, Evan MeyerScott, Bradley G. Christensen, Peter Bierhorst,Michael A. Wayne, Martin J. Stevens, Thomas Gerrits, Scott Glancy, Deny R. Hamel, Michael S. Allman, Kevin J. Coakley, Shellee D. Dyer, Carson Hodge, Adriana E. Lita, Varun B. Verma, Camilla Lambrocco, Edward Tortorici, Alan L. Migdall, Yanbao Zhang, Daniel R. Kumor, William H. Farr, Francesco Marsili, Matthew D. Shaw, Jeffrey A. Stern, Carlos Abellán, Waldimar Amaya, Valerio Pruneri, Thomas Jennewein, Morgan W. Mitchell, Paul G. Kwiat, Joshua C. Bienfang, Richard P. Mirin, Emanuel Knill, and Sae Woo Nam. Strong loopholefree test of local realism. Physical Review Letters, 115(25):250402, 2015. [8] Daniel Alsina and José Ignacio Latorre. Experimental test of mermin inequalities on a fivequbit quantum computer. Physical Review A, 94(1):012314, 2016. [9] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta.Validating quantum computers using randomized model circuits. Physical Review A, 100(3):032328, 2019. [10] Gary J Mooney, Charles D Hill, and Lloyd CL Hollenberg. Entanglement in a 20qubit superconducting quantum computer. arXiv preprint arXiv:1903.11747, 2019. [11] Ibm quantum experience. [12] Daniel M Greenberger, Michael A Horne, Abner Shimony, and Anton Zeilinger.Bell's theorem without inequalities. American Journal of Physics, 58(12):1131–1143, 1990. [13] Manoranjan Swain, Amit Rai, Bikash K. Behera, and Prasanta K. Panigrahi. Experimental demonstration of the violations of mermin's and svetlichny's inequalities for w and ghz states. Quantum Information Processing, 18(7):218, 2019. [14] Ken X Wei, Isaac Lauer, Srikanth Srinivasan, Neereja Sundaresan, Douglas T McClure, David Toyli, David C McKay, Jay M Gambetta, and Sarah Sheldon. Verifying multipartite entangled ghz states via multiple quantum coherences. arXiv preprint arXiv:1905.05720, 2019. [15] Wei-Jia Huang, Wei-Chen Chien, Chien-Hung Cho, Che-Chun Huang, Tsung-Wei Huang, and ChingRay Chang. Mermin’s inequalities of multiple qubits with orthogonal measurements on ibm q 53qubit system. Quantum Engineering, 2(2):e45, 2020. [16] César Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Quantum computation with phase drift errors. Physical review letters, 78(20):3971, 1997. [17] Pérola Milman. Phase dynamics of entangled qubits. Physical Review A, 73(6):062118, 2006. [18] CHINGRAY CHANG, YEUCHUNG LIN, KUEILIN CHIU, and TSUNGWEI HUANG. The second quantum revolution with quantum computers. AAPPS Bulletin, 30(1), 2020. [19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505–510, 2019. [20] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.a [21] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. Hardwareefficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671):242–246, 2017. [22] Julia E Rice, Tanvi P Gujarati, Tyler Y Takeshita, Joe Latone, Mario Motta, Andreas Hintennach, and Jeannette M Garcia. Quantum chemistry simulations of dominant products in lithiumsulfur batteries. arXiv preprint arXiv:2001.01120, 2020. [23] Anton Robert, Panagiotis Kl Barkoutsos, Stefan Woerner, and Ivano Tavernelli. Resourceefficient quantum algorithm for protein folding. arXiv preprint arXiv:1908.02163, 2019. [24] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014. [25] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán AspuruGuzik. The theory of variational hybrid quantumclassical algorithms. New Journal of Physics, 18(2):023023, 2016. [26] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum supremacy in nearterm devices. Nature Physics, 14(6):595–600, 2018. [27] Sixia Yu, ZengBing Chen, JianWei Pan, and YongDe Zhang. Classifying nqubit entanglement via bell's inequalities. Physical review letters, 90(8):080401, 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57528 | - |
dc.description.abstract | 量子電腦與古典電腦的差別,古典電腦位元有0態與1態,n位元的狀態僅有2^n種,而量子電腦有糾纏態的性質與相位,因此量子電腦擁有更多的變化,能有近乎無限的可能性。因此本論文主要在研究的兩大主軸便是觀察IBM Q 53量子位元量子電腦上多組量子位元(N=2 至 N=7)的糾纏態特性及相位對糾纏態性質的影響。第一部分已在Quantum Engineering發表,是IBM Rochester 上多組量子位元(N = 2 至 N = 7)的類 GHZ狀態,彼此之間對Mermin正交多項式的最大違反值與解析結果進行比較。另個實驗是利用不同相位角的兩個量子位元對相位軌跡分析,研究了在類GHZ狀態下對改良 Mermin 的多項式的影響。
我們第一部分的結果表明,當 N ≤ 4 時,IBM Rochester 的糾纏性質是相當好的,而對於更長的糾纏鏈,糾纏只對某些特殊的連接有效。另個實驗相位軌跡分析,大部分軌跡皆為穩定的圓形軌跡,而在特定情況下類GHZ狀態會與其激發態會產生死灰復燃的演變。 | zh_TW |
dc.description.abstract | The difference between a quantum computer and a classical computer is that the classical computer one bit has zero and one states with only 2^n states for n bits, while the quantum computer has the nature that phase and entanglement, so the quantum computer has more variations and can have nearly infinite possibilities. Therefore, the two principal axes of this paper are to observe the entangled state characteristics of multiple qubits (N=2 to N=7) on the IBM Q 53 qubit quantum computer and the influence of phase on the entangled state properties. The first part, which has been published in Quantum Engineering, is the GHZ-like states of multiple qubits (N = 2 to N = 7) in IBM Rochester, and compares the maximum violation values of Mermin orthogonal polynomials with the analytic results among each other. In another experiment, two qubits with different phase angles were used to analyze the phase trajectory, and the effect on the improved Mermin polynomial in the GHZ-like states was studied.
Our results in the first part show that the entanglement nature of IBM Rochester is fairly good when N ≤ 4, while for longer chains, entanglement is only valid for certain special connections. In the other experimental phase trajectory analysis, most of the trajectories are stable circular trajectories, and under certain circumstances the GHZ-like state and its excited state will produce the evolution of resurgence and reignition. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:50:03Z (GMT). No. of bitstreams: 1 U0001-2007202017361800.pdf: 16331564 bytes, checksum: a8ce918123013cdec25b38f90b83d4dd (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書iii 誌謝v 摘要vii Abstract ix 1 Introduction 1 2 Theory and Method 5 3 Multiple qubits with Orthogonal Measurements 11 4 Phase Trajectory Analysis on the Evolution of Entangled Pairs 15 5 Conclusion 21 A Proof of Expectation Value of Mermin’s Polynomial with GHZ-likes State 23 B Modify Mermin's Polynomial Phase Trajectory Analysis of Entangled Qubits Evolvement 31 C Experiment Data 35 Bibliography 65 | |
dc.language.iso | en | |
dc.title | IBM Q 53 量子位元量子電腦的Mermin不等式實驗 | zh_TW |
dc.title | Experiment of Mermin's Inequalities on IBM Q 53 qubits Computer | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 管希聖(Hsi-Sheng Goan),黃琮暐(Tsung-Wei Huang) | |
dc.subject.keyword | 量子電腦,糾纏態,局域性存在原理,正交性質, | zh_TW |
dc.subject.keyword | Quantum computer,Entanglement,Local Realism,Orthogonality, | en |
dc.relation.page | 68 | |
dc.identifier.doi | 10.6342/NTU202001657 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-03 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理學研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-2007202017361800.pdf 目前未授權公開取用 | 15.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。