Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉開溫(Kai-Wun Yeh)
dc.contributor.authorChia-Chi Hsiehen
dc.contributor.author謝家綺zh_TW
dc.date.accessioned2021-06-16T06:50:00Z-
dc.date.available2015-07-29
dc.date.copyright2014-07-29
dc.date.issued2013
dc.date.submitted2014-07-24
dc.identifier.citation王恆隆、鐘振德、葉開溫。2003。文心蘭花器發育過程中當代假球莖內碳水化
合物與自由態胺基酸的變化。中華農會學報。4: 476-488。
易美秀。2011。文心蘭栽培管理。臺中區農業專訊。74: 7-9。
易美秀。2012。文心蘭。臺中區農業改良場特刊。112: 137-146。
吳佩穎。2012。維他命C與一氧化氮於文心蘭及阿拉伯芥開花過程之協同作用。碩士論文。國立台灣大學植物科學研究所。台北。
林智良、朱德民。1989。光對作物光合產物分配的影響。科學農業。37(5-6): 140-147。
林瑞松。1999。文心蘭栽培管理及採後處理。屏東科技大學農推會農業推展手
冊。17-23。
林瑞松。2005。文心蘭。台灣農家要覽-農作篇(二)。903-908
張允瓊。1996 。溫度、光度及肥料濃度對文心蘭生長與開花之影響。碩士論文。台灣大學園藝研究所。台北。
張允瓊。1998。光度對文心蘭假球莖生長及開花品質之影響。宜蘭技術學報。
1: 39-51。
張玉雲。2009。植物花朵發育及開花時間相關基因之研究。碩士論文。中興大學 生物科技學研究所。台中。
張朝晏。2009。文心蘭之健康管理。2009年花卉健康管理研討會。195-202。
徐懷恩。1997。不同光照、氮源肥料及花梗修剪對文心蘭開花之影響。碩士論文。中興大學園藝學系。台中。
許榮華。2010。假球莖於著生蘭生育上所扮演的角色。台中區農業改良場特刊。105: 154-162。
許榮華。2012。台灣文心蘭切花產銷現況及產業經營需求。台中區農業改良場一○一年專題討論專集。201-207。
許玉妹。1999。文心蘭栽培管理及採後處理。國立屏東大學農業推廣委員會編
印。35-38。
黃怡菁。1997。文心蘭基本生長週期與花期修剪產期調節。高雄區農業專訊。
22: 16-17。
黃家惠、許世弦、黃書虹、黃光亮。2008。不同日/夜溫處理對蝴蝶蘭抑梗及開花之影響。台灣園藝。54: 11-23。
黃柏睿。2011。文心蘭ascorbate peroxidase 對阿拉伯芥在中高溫生長下對於開花機制的調控功能。碩士論文。國立台灣大學植物科學研究所。台北。
賴本智。2001。文心蘭、蜘蛛蘭、堇花蘭、齒舌蘭及其近緣屬的種源介紹。台灣區花卉發展協會文心蘭專刊。86-133。
Amako, K., Chen, G.-X., and Asada, K. (1994). Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant and Cell Physiology 35: 497-504.
Anderson, J., Foyer, C.H., and Walker, D. (1983). Light-dependent reduction of cdehydroascorbate and uptake of exogenous ascorbate by spinach chloroplasts. Planta 158: 442-450.
Apontoweil, P., and Berends, W. (1975). Glutathione biosynthesis in Escherichia coli K 12 properties of the enzymes and regulation. Biochimica et Biophysica Acta (BBA)-General Subjects 399: 1-9.
Asada, K. (1984). Chloroplasts: formation of active oxygen and its scavenging. Methods in Enzymology 105: 422-429.
Attolico, A., and De Tullio, M. (2006). Increased ascorbate content delays flowering in long-day grown Arabidopsis thaliana (L.) Heynh. Plant Physiology and Biochemistry 44: 462-466.
Baker, C.J., and Orlandi, E.W. (1995). Active oxygen in plant pathogenesis. Annual Review of Phytopathology 33: 299-321.
Balasubramanian, S., Sureshkumar, S., Lempe, J., and Weigel, D. (2006). Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics 2: e106.
Ball, L., Accotto, G.P., Bechtold, U., Creissen, G., Funck, D., Jimenez, A., Kular, B., Leyland, N., Mejia-Carranza, J., and Reynolds, H. (2004). Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16: 2448-2462.
Barth, C., De Tullio, M., and Conklin, P.L. (2006). The role of ascorbic acid in the control of flowering time and the onset of senescence. Journal of Experimental Botany 57: 1657-1665.
Barth, C., Moeder, W., Klessig, D.F., and Conklin, P.L. (2004). The timing of senescence and response to pathogens is altered in the ascorbate-deficient Arabidopsis mutant vtc-1. Plant Physiology 134: 1784-1792.
Biliński, T., Krawiec, Z., Liczmański, A., and Litwińska, J. (1985). Is hydroxyl radical generated by the fenton reaction in vivo? Biochemical and Biophysical Research Communications 130: 533-539.
Blazquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics 33: 168-171.
Bowler, C., Montagu, M.V., and Inze, D. (1992). Superoxide dismutase and stress tolerance. Annual Review of Plant Biology 43: 83-116.
Castro, M.I., Loef, I., Bartetzko, L., Searle, I., Coupland, G., Stitt, M., and Osuna, D. (2010). Nitrate regulates floral induction in Arabidopsis, acting independently of light, gibberellin and autonomous pathways. Planta 233(3): 539-552.
Cerdan, P.D., and Chory, J. (2003). Regulation of flowering time by light quality. Nature 423: 881-885.
Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11: 113-116.
Chen, Z., and Gallie, D.R. (2006). Dehydroascorbate reductase affects leaf growth, development, and function. Plant Physiology 142: 775-787.
Cheng, J.-C., Seeley, K.A., and Sung, Z.R. (1995). RML1 and RML2, Arabidopsis genes required for cell proliferation at the root tip. Plant Physiology 107: 365-376.
Conklin, P., and Barth, C. (2004). Ascorbic acid, a familiar small molecule intertwined in the response of plants to ozone, pathogens, and the onset of senescence. Plant Cell and Environment 27: 959-970.
Davletova, S., Rizhsky, L., Liang, H., Shengqiang, Z., Oliver, D.J., Coutu, J., Shulaev, V., Schlauch, K., and Mittler, R. (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17: 268-281.
De Pinto, M.C., Paradiso, A., Leonetti, P., and De Gara, L. (2006). Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant Journal 48: 784-795.
Diaz, V.P., Wolff, T., Markovic, J., Pallardo, F., and Foyer, C. (2010). A nuclear glutathione cycle within the cell cycle. Biochemical Journal 431: 169-178.
Elizabeth, A.H., Smits, P., Zhu, Y.L., Sears, T., and Terry, N. (2000). Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiologia Plantarum 110(4): 455-460.
Eltayeb, A.E., Kawano, N., Badawi, G.H., Kaminaka, H., Sanekata, T., Morishima, I., Shibahara, T., Inanaga, S., and Tanaka, K. (2006). Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiologia Plantarum 127: 57-65.
Fahey, R.C., Di Stefano, D.L., Meier, G.P., and Bryan, R.N. (1980). Role of hydration state and thiol-disulfide status in the control of thermal stability and protein synthesis in wheat embryo. Plant Physiology 65: 1062-1066.
Foyer, C.H., and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25.
Foyer, C.H., Lelandais, M., Galap, C., and Kunert, K.J. (1991). Effects of elevated cytosolic glutathione reductase activity on the cellular glutathione pool and photosynthesis in leaves under normal and stress conditions. Plant Physiology 97: 863-872.
Foyer, C.H., and Noctor, G. (2005a). Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17: 1866-1875.
Foyer, C.H., and Noctor, G. (2005b). Oxidant and antioxidant signalling in plants: a re‐evaluation of the concept of oxidative stress in a physiological context. Plant Cell and Environment 28: 1056-1071.
Foyer, C.H., and Shigeoka, S. (2011). Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155: 93-100.
Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.-J., Pruvost, C., and Jouanin, L. (1995). Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiology 109: 1047-1057.
Gillespie, K.M., and Ainsworth, E.A. (2007). Measurement of reduced, oxidized and total ascorbate content in plants. Nature Protocols 2: 871-874.
Gossett, D.R., Banks, S.W., Millhollon, E.P., and Lucas, M.C. (1996). Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. Plant Physiology 112: 803-809.
Grill, D., Tausz, M., De Kok, L.J., and Anderson, J.W. (2001). Significance of glutathione to plant adaptation to the environment. Plant Ecophysiology 2: 1572-5561.
Han, Y., Chaouch, S., Mhamdi, A., Queval, G., Zechmann, B., and Noctor, G. (2013). Functional analysis of Arabidopsis mutants points to novel roles for glutathione in coupling H2O2 to activation of salicylic acid accumulation and signaling. Antioxidants and Redox Signaling 18: 2106-2121.
Herschbach, C., and Rennenberg, H. (2001). Sulfur nutrition of deciduous trees. Naturwissenschaften 88: 25-36.
Hew, C., and Yong, J. (1994). Growth and photosynthesis of Oncidium 'Goldiana'. Journal of Horticultural Science 69: 809-820.
Hew, C., Koh, K., and Khoo, G. (1998a). Pattern of photoassimilate partitioning in pseudobulbous and rhizomatous terrestrial orchids. Environmental and Experimental Botany 40: 93-104.
Hew, C., Soh, W., and Ng, C. (1998b). Variation in photosynthetic characteristics along the leaf blade of Oncidium Goldiana, a C3 tropical epiphytic orchid hybrid. International Journal of Plant Sciences 159(1): 116-120.
Hopkins, F.G., and Morgan, E.J. (1936). Some relations between ascorbic acid and glutathione. Biochemical Journal 30: 1446.
Howden, R., Andersen, C.R., Goldsbrough, P.B., and Cobbett, C.S. (1995). A cadmium-sensitive, glutathione-deficient mutant of Arabidopsis thaliana. Plant Physiology 107: 1067-1073.
Imaizumi, T., and Kay, S.A. (2006). Photoperiodic control of flowering: not only by coincidence. Trends in Plant Science 11: 550-558.
Jimenez, A., Hernandez, J.A., del Rio, L.A., and Sevilla, F. (1997). Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology 114: 275-284.
Jones, D.P. (2006). Redefining oxidative stress. Antioxidants and Redox Signaling 8: 1865-1879.
Jung, J.H., Seo, Y.H., Seo, P.J., Reyes, J.L., Yun, J., Chua, N.H., and Park, C.M. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19: 2736-2748.
Komeda, Y. (2004). Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55: 521-535.
Kotchoni, S.O., Larrimore, K.E., Mukherjee, M., Kempinski, C.F., and Barth, C. (2009). Alterations in the endogenous ascorbic acid content affect flowering time in Arabidopsis. Plant Physiology 149: 803-815.
Krishnamurthy, A., and Rathinasabapathi, B. (2013). Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signaling and Behavior 8: e25761.
Lokhande, S.D., Ogawa, K.i., Tanaka, A., and Hara, T. (2003). Effect of temperature on ascorbate peroxidase activity and flowering of Arabidopsis thaliana ecotypes under different light conditions. Journal of Plant Physiology 160: 57-64.
Lu, Y.-Y., Deng, X.-P., and Kwak, S.-S. (2010). Over expression of Cu/Zn superoxide dismutase (CuZn/SOD) and ascorbate peroxidase (APX) in transgenic sweet potato enhances tolerance and recovery from drought stress. African Journal of Biotechnology 9: 8378-8391.
Ma, Y.-H., Ma, F.-W., Zhang, J.-K., Li, M.-J., Wang, Y.-H., and Liang, D. (2008). Effects of high temperature on activities and gene expression of enzymes involved in ascorbate–glutathione cycle in apple leaves. Plant Science 175: 761-766.
Mannervik, B. (1999). Measurement of glutathione reductase activity. Current Protocols in Toxicology 7.2.1-7.2. 4.
Marrs, K.A. (1996). The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Biology 47: 127-158.
Marty, L., Siala, W., Schwarzlander, M., Fricker, M.D., Wirtz, M., Sweetlove, L.J., Meyer, Y., Meyer, A.J., Reichheld, J.-P., and Hell, R. (2009). The NADPH-dependent thioredoxin system constitutes a functional backup for cytosolic glutathione reductase in Arabidopsis. Proceedings of the National Academy of Sciences 106: 9109-9114.
Mehlhorn, H., Lelandais, M., Korth, H., and Foyer, C. (1996). Ascorbate is the natural substrate for plant peroxidases. FEBS Letters 378: 203-206.
Meister, A. (1988). Glutathione metabolism and its selective modification. The Journal of Biological Chemistry 263: 17205-17208.
Meister, A., and Anderson, M.E. (1983). Glutathione. Annual Review of Biochemistry 52: 711-760.
Melchiorre, M., Robert, G., Trippi, V., Racca, R., and Lascano, H.R. (2009). Superoxide dismutase and glutathione reductase overexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regulation 57: 57-68.
Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., Saindrenan, P., Gouia, H., Issakidis-Bourguet, E., and Renou, J.P. (2010). Arabidopsis GLUTATHIONE REDUCTASE1 plays a crucial role in leaf responses to intracellular hydrogen peroxide and in ensuring appropriate gene expression through both salicylic acid and jasmonic acid signaling pathways. Plant Physiology 153: 1144-1160.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7: 405-410.
Mou, Z., Fan, W., and Dong, X. (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935-944.
Muller, B.S.F., Sakamoto, T., Silveira, R.D.D., Carvalho, P.F.Z., Pereira, M., Pappas, G.J., Costa, M.M.C., Guiaraes, C.M.G., Pereira, W.J., Brondani, C., and Brondani, R.P.V. (2013). Differentially expressed genes during flowering and grain filling in common bean (Phaseolus vulgaris) grown under drought stress conditions. Plant Molecular Biology Report 32:438–451.
Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S., and Soave, C. (2004). Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat‐induced photooxidative stress and to nitric oxide‐induced cell death. Plant Journal 38: 940-953.
Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Biology 49: 249-279.
Noctor, G., Gomez, L., Vanacker, H., and Foyer, C.H. (2002). Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany 53: 1283-1304.
Ogawa, K.I. (2005). Glutathione-associated regulation of plant growth and stress responses. Antioxidants and Redox Signaling 7: 973-981.
Ogawa, K.I., Tasaka, Y., Mino, M., Tanaka, Y., and Iwabuchi, M. (2001). Association of glutathione with flowering in Arabidopsis thaliana. Plant and Cell Physiology 42: 524-530.
Parisy, V., Poinssot, B., Owsianowski, L., Buchala, A., Glazebrook, J., and Mauch, F. (2006). Identification of PAD2 as a c-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant Journal 49: 59-172.
Polle, A. (2001). Dissecting the superoxide dismutase-ascorbate-glutathione-pathway in chloroplasts by metabolic modeling. Plant Physiology 126: 445-462.
Queval, G., and Noctor, G. (2007). A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry 363: 58-69.
Rahman, I., Kode, A., and Biswas, S.K. (2007). Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nature Protocols 1: 3159-3165.
Ramirez, L., Bartoli, C.G., and Lamattina, L. (2013). Glutathione and ascorbic acid protect Arabidopsis plants against detrimental effects of iron deficiency. Journal of Experimental Botany 64: 3169-3178.
Rauser, W.E. (1999). Structure and function of metal chelators produced by plants. Cell Biochemistry and Biophysics 31: 19-48.
Sarowar, S., Kim, E.N., Kim, Y.J., Ok, S.H., Kim, K.D., Hwang, B.K., and Shin, J.S. (2005). Overexpression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Science 169: 55-63.
Sawa, M., Kay, S.A., and Imaizumi, T. (2008). Photoperiodic flowering occurs under internal and external coincidence. Plant Signaling and Behavior 3: 269-271.
Sawa, M., Nusinow, D.A., Kay, S.A., and Imaizumi, T. (2007). FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318: 261-265.
Sawa, M., and Kay, S.A. (2011) GIGANTEA directly activates Flowering Locus T in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 108(28): 11698-11703.
Scandalios, J. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Brazilian Journal of Medical and Biological Research 38: 995-1014.
Sečenji, M., Hideg, E., Bebes, A., and Gyorgyey, J. (2010). Transcriptional differences in gene families of the ascorbate–glutathione cycle in wheat during mild water deficit. Plant Cell Reports 29: 37-50.
Shen, C.-H., Krishnamurthy, R., and Yeh, K.-W. (2009). Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. Plant and Cell Physiology 50: 935-946.
Shi, W., Muramoto, Y., Ueda, A., and Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 273: 23-27.
Shigenaga, T., Yamauchi, N., Funamoto, Y., and Shigyo, M. (2005). Effects of heat treatment on an ascorbate–glutathione cycle in stored broccoli (Brassica oleracea) florets. Postharvest Biology and Technology 38: 152-159.
Smirnoff, N. (2000). Ascorbat acid: metabolism and functions of a multifaceted molecule. Current Opinion in Plant Biology 3: 229-235.
Smith, J.J., Ververidis, P., and John, P. (1992). Characterization of the ethylene-forming enzyme partially purified from melon. Phytochemistry 31: 1485-1494.
Strohm, M., Jouanin, L., Kunert, K.J., Pruvost, C., Polle, A., Foyer, C.H., and Rennenberg, H. (1995). Regulation of glutathione synthesis in leaves of transgenic poplar (Populus tremula x P. alba) overexpressing glutathione synthetase. Plant Journal 7: 141-145.
Ushimaru, T., Nakagawa, T., Fujioka, Y., Daicho, K., Naito, M., Yamauchi, Y., Nonaka, H., Amako, K., Yamawaki, K., and Murata, N. (2006). Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. Journal of Plant Physiology 163: 1179-1184.
Van Loon, A., Pesold-Hurt, B., and Schatz, G. (1986). A yeast mutant lacking mitochondrial manganese-superoxide dismutase is hypersensitive to oxygen. Proceedings of the National Academy of Sciences 83: 3820-3824.
Vanacker, H., Carver, T.L., and Foyer, C.H. (2000). Early H2O2 accumulation in mesophyll cells leads to induction of glutathione during the hyper-sensitive response in the barley-powdery mildew interaction. Plant Physiology 123: 1289-1300.
Vernoux, T., Wilson, R.C., Seeley, K.A., Reichheld, J.-P., Muroy, S., Brown, S., Maughan, S.C., Cobbett, C.S., Van Montagu, M., and Inze, D. (2000). The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12: 97-109.
Wada, K.C., and Takeno, K. (2010). Stress-induced flowering. Plant Signaling and Behavior 5: 944-947.
Wang, C.-Y., Chiou, C.-Y., Wang, H.-L., Krishnamurthy, R., Venkatagiri, S., Tan, J., and Yeh, K.-W. (2008). Carbohydrate mobilization and gene regulatory profile in the pseudobulb of Oncidium orchid during the flowering process. Planta 227: 1063-1077.
Wang, G.-F., Seabolt, S., Hamdoun, S., Ng, G., Park, J., and Lu, H. (2011). Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiology 156: 1508-1519.
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inze, D., and Van Camp, W. (1997). Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal 16: 4806-4816.
Xiang, C., Werner, B.L., E'Lise, M.C., and Oliver, D.J. (2001). The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126: 564-574.
Xing, S., Lauri, A., and Zachgo, S. (2006). Redox regulation and flower development: a novel function for glutaredoxins. Plant Biology 8: 547-555.
Yaish, M.W., Colasanti, J., and Rothstein, S.J. (2011). The role of epigenetic processes in controlling flowering time in plants exposed to stress. Journal of Experimental Botany 62: 3727-3735.
Yanagida, M., Mino, M., Iwabuchi, M., and Ogawa, K.i. (2004). Reduced glutathione is a novel regulator of vernalization-induced bolting in the rosette plant Eustoma grandiflorum. Plant and Cell Physiology 45: 129-137.
Zaharieva, T., Yamashita, K., and Matsumoto, H. (1999). Iron deficiency induced changes in ascorbate content and enzyme activities related to ascorbate metabolism in cucumber roots. Plant and Cell Physiology 40: 273-280.
Zaharieva, T.B., and Abadia, J. (2003). Iron deficiency enhances the levels of ascorbate, glutathione, and related enzymes in sugar beet roots. Protoplasma 221: 269-275.
Zenk, M.H. (1996). Heavy metal detoxification in higher plants-a review. Gene 179: 21-30.
Zhang, J., and Kirkham, M. (1996). Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Science 113: 139-147.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57527-
dc.description.abstract文心蘭生長過程中是如何決定走向營養生長或生殖生長之機制至今仍不明瞭。前人研究指出,在高溫 (30℃) 狀態下能促進文心蘭細胞質中之維他命C過氧化酶 (Oncidium cytosolic ascorbate peroxidase 1,OgcytAPX1) 將維他命C (ascorbic acid, AsA) 氧化,而降低維他命C之氧化還原比例 (還原態/氧化態),促使文心蘭南西品系 (Oncidium Gower Ramsey) 提早開花。然而維他命C除了作為植物體最主要之抗氧化物及參與荷爾蒙生合成之輔酶等功能之外,目前並無研究報導指出其是否有確切之目標蛋白以及其是否能調控轉錄因子。為了瞭解維他命C氧化還原變化之訊息是如何傳遞至開花路徑,本研究發現,另一抗氧化物穀胱甘肽 (glutathione, GSH) 能將維他命C氧化還原比例變化之訊息傳遞至開花路徑,並且是藉由維他命C -穀胱甘肽循環 (AsA-GSH cycle) 路徑所致。藉由分析阿拉伯芥大量表現OgcytAPX1之轉殖株及其突變株,於高溫誘導下,間接探討維他命C與穀胱甘肽之上下游關係;結果顯示大量表現文心蘭細胞質維他命C過氧化酶之轉殖株,其穀胱甘肽含量及穀胱甘肽氧化還原比例會隨高溫處裡時間增加而顯著的降低,此表示OgcytAPX1能影響維他命C氧化還原比例進而影響穀胱甘肽氧化還原比例。利用生理生化分析測定穀胱甘肽氧化態與還原態,結果顯示,穀胱甘肽氧化還原比例於文心蘭開花時期會顯著的降低至一門檻值。進一步測定影響穀胱甘肽氧化態及還原態之相關基因之表現量以及其酵素活性,顯示榖胱甘肽生合成基因以及穀胱甘肽還原酶基因皆可在長時間高溫誘導下顯著的降低表現,使得氧化還原態比例降低。此結果說明穀胱甘肽氧化還原態比例與文心蘭開花誘導之機制有關。藉由外加處裡穀胱甘肽生合成抑制劑 (BSO) 於文心蘭,可發現文心蘭具有提早開花之表現型,並且分析文心蘭開花相關基因表現,GIGANTEA (GI), FLOWERING LOCUS T (FT), LEAFY (LFY), 及 APETALA 1 (AP1),均可於處裡BSO及GSSG (氧化態之GSH) 之後有顯著提高表現,更加證明穀胱甘肽氧化還原態確實能夠影響文心蘭開花。總結上述結果,穀胱甘肽氧化還原態能將上游維他命C氧化還原之訊息傳遞至下游開花路徑,並且可能透過GI影響文心蘭開花路徑。zh_TW
dc.description.abstractThe mechanism of how the phase transition from vegetative to bolting stage in Oncidium is still not distinctive. Previous studies have shown that high temperature-induced flowering is regulated by Oncidium cytosolic ascorbate peroxidase 1 (OgcytAPX1) through mediating the redox state of ascorbate (AsA). However, there were no reports on the regulating proteins interacting with AsA in the flowering process.
Here, we demonstrate that the effect of AsA redox state underlying flowering induction of Oncidium was correlated with glutathione (GSH) redox state, and this signal transduction is transduced via AsA-GSH cycle. By analyzing over-expression of OgcytAPX1 in Arabidopsis, and Arabidopsis mutant lines, apx1-1, to realize the relationship in redox homeostasis between AsA and GSH under high-temperature. This result indicate that the redox changes in GSH is closely related with AsA redox state, and further to induce flowering. Biochemical assays of the GSH levels, and GSH redox ratio, revealing that the decrease of GSH redox ratio was associated with bolting stage and high-temperature induced flowering. Analysis of transcripts level and enzymatic activity revealed that the GSH biosynthesis enzyme (γ-glutamylcysteine synthetase, GSH1 ; glutathione synthetase, GSH2) and glutathione reductase (GR1), the GSH-redox related enzyme, were decrease during bolting stage and after the high-temperature stress condition. To reconfirm the influence of GSH redox ratio in bolting, we applied glutathione biosynthesis inhibitor, buthionine sulphoximine (BSO), and GSSG (the oxidized form of GSH) in Oncidium. The results demonstrate that GSH redox ratio could strongly influence bolting. Moreover, analysis on the expression profiling of floral genes also demonstrating that GIGANTEA (GI), FLOWERING LOCUS T (FT), LEAFY (LFY), and APETALA 1 (AP1) are highly induced in these treatment, suggesting that GSH redox ratio plays the crucial role on flowering induction in Oncidium.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:50:00Z (GMT). No. of bitstreams: 1
ntu-102-R01b42010-1.pdf: 7083677 bytes, checksum: 65c6eeb45f1b468a98db8cc804010ecf (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目錄
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖表目錄 vii
附錄目錄 viii
第一章 前言 1
第一節 文心蘭概述 1
第二節 非生物性逆境誘導之開花生理 6
第三節 植物之維他命C-穀胱甘肽循環 (AsA-GSH cycle) 10
第四節 研究目的 16
第二章 材料與方法 18
一、實驗材料 18
二、實驗方法 18
第一節 文心蘭與阿拉伯芥高溫處理 18
第二節 文心蘭之穀胱甘肽還原態 (GSH)、穀胱甘肽氧化 (GSSG)、穀胱甘肽
合成酶抑制劑 (BSO) 及過氧化氫 (H2O2) 處理 19
第三節 文心蘭與阿拉伯芥穀胱甘肽 (GSH) 含量測定 20
第四節 文心蘭維他命C (AsA) 含量測定 21
第五節 酵素活性測定 22
第六節 基因表現量測定 26
第三章 結果 31
第一節 文心蘭中維他命C與穀胱甘肽之關係 31
第二節 文心蘭維他命C與穀胱甘肽之訊息傳遞關係 32
第三節 藉由外加試驗證明文心蘭維他命C與穀胱甘肽之訊息傳遞之關係 33
第四節 穀胱甘肽氧化還原比例在文心蘭不同生育階段的表現情形 34
第五節 影響穀胱甘肽氧化還原比例之相關基因在文心蘭不同生育階段的表現
情形 34
第六節 影響穀胱甘肽氧化還原比例之相關基因在高溫下於文心蘭中的表現情
形 35
第七節 影響穀胱甘肽氧化還原比例之DHAR及GR在不同生長階段與高溫下
於文心蘭中的酵素活性 37
第八節 外加穀胱甘肽相關藥劑對文心蘭開花之影響 38
第九節 GIGANTEA基因之釣取 43
第四章 討論 44
第一節 文心蘭中維他命C與穀胱甘肽之關係 44
第二節 文心蘭維他命C與穀胱甘肽之訊息傳遞關係 45
第三節 藉由外加試驗證明文心蘭維他命C與穀胱甘肽之訊息傳遞關係 46
第四節 穀胱甘肽氧化還原比例在文心蘭不同生育階段的表現情形 47
第五節 影響穀胱甘肽氧化還原比例之相關基因及酵素活性在文心蘭不同生育
階段的表現情形 48
第六節 影響穀胱甘肽氧化還原比例之相關基因及酵素活性在高溫下於文心蘭
中的表現情形 49
第七節 外加穀胱甘肽相關藥劑對文心蘭開花之影響 51
第八節 處理BSO以及GSSG藥劑對GIGANTEA基因之表現量 54
第九節 未來展望 55
參考文獻 56
 
圖表目錄
圖一、溫度處理對文心蘭假球莖之維他命C與穀胱甘肽之影響 70
圖二、OgcytAPX1-OE (大量表現OgcytAPX1之阿拉伯芥轉植株) 與apx (AtcytAPX1突
變株) 在高溫環境下之穀胱甘肽變化 71
圖三、穀胱甘肽氧化還原態在不同生長階段之假球莖含量變化情形 72
圖四、文心蘭於不同生長階段之假球莖中穀胱甘肽相關基因表現以及酵素活性之變化
情形 73
圖五、高溫下,文心蘭假球莖中穀胱甘肽相關基因表現及酵素活性變化情形 74
圖六、外加噴灑穀胱甘肽相關藥劑對文心蘭開花之影響 75
圖七、外加噴灑穀胱甘肽相關藥劑對文心蘭開花品質之影響 76
圖八、偵測外加噴灑穀胱甘肽相關藥劑之文心蘭假球莖穀胱甘肽氧化還原變化 77
圖九、噴灑穀胱甘肽相關藥劑之文心蘭假球莖中穀胱甘肽相關基因表現以及酵素活性
變化之情形 78
圖十、外加噴灑穀胱甘肽相關藥劑對還原態以及氧化態維他命C之影響 79
圖十一、噴灑穀胱甘肽相關藥劑之文心蘭假球莖中對APX1基因表現之影響情形 80
圖十二、偵測外加噴灑穀胱甘肽相關藥劑之文心蘭假球莖開花基因表現情形 81
圖十三、偵測外加噴灑穀胱甘肽相關藥劑之文心蘭花芽開花基因表現情形 82
圖十四、文心蘭GI與朵麗蝶蘭 (DoGI)、水稻 (OsGI) 以及阿拉伯芥 (AtGI)之胺基酸
編碼序列比對 84
圖十五、文心蘭GIGANTEA (GI) 與各類物種之GI親緣演化分析 85
圖十六、維他命C-穀胱甘肽循環參與之文心蘭高溫誘導開花機制之假說模型 86
表一、噴灑不同藥劑對文心蘭之開花百分比之影響 87
表二、不同藥劑處理後對花卉品質之影響 88
 
附錄目錄
附錄一、文心蘭Gower Ramsey 品系親緣圖譜 89
附錄二、文心蘭Gower Ramsey 生活史 90
附錄三、文心蘭Gower Ramsey各組織名稱示意圖 91
附錄四、穀胱甘肽 (GSH) 生合成路徑示意圖 92
附錄五、維他命C-穀胱甘肽循環 (AsA-GSH cycle) 示意圖 93
附錄六、阿拉伯芥OgcytAPX1轉植株與apx突變株於高溫環境下之開花情形 94
附表一、植物體中主要之抗氧化酵素。 94
附表二、引子序列 96
附表三、檢索表 98
dc.language.isozh-TW
dc.title穀胱甘肽的氧化與還原狀態在維他命C-穀胱甘肽循環鏈中與文心蘭開花機制之關聯性zh_TW
dc.titleThe redox state of glutathione links to flowering induction
via ascorbate - glutathione cycle in Oncidium Gower Ramsey
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee詹明才(Ming-Tsair Chan),詹富智(Fuh-Jyh Jan),陳仁治(Jen-Chih Chen),王恆隆(Heng-Long Wang)
dc.subject.keyword維他命C-穀胱甘?循環,穀胱甘?氧化還原比例,開花,高溫,文心蘭,zh_TW
dc.subject.keywordAsA-GSH cycle,GSH redox,flowering,high temperature,Oncidium,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2014-07-24
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
6.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved