請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57509完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 朱國瑞 | |
| dc.contributor.author | Jing-Hong Chen | en |
| dc.contributor.author | 陳景弘 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:49:11Z | - |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-24 | |
| dc.identifier.citation | [1] P. Forman, Rev. Mod. Phys. 67, 397, 1995.
[2] A. V. Gaponov-Grekhov and V. L. granatstein, Applications of High- Power Microwaves, Artech Houe, Boston, London, 1994. [3] K. R. Chu, Rev. Mod. Phys. 76(2), 489, 2004. [4] K. R. Chu, Nonlinear formulation for gyro-TWT and CARM amplifier. [5] K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barentt, S. H. Chen, T. T. Yang and Demostehenes J. Dialetis, IEEE Trans. Plasma Sci. 27, 1999. [6] C. S. Kou, S. H. Chen, L. R. Barnett, H. Y. Chen, and K. R. Chu, Phys. Rev. Lett.70, 924, 1993. [7] C. S. Kou, Phys. Plasmas, 1, 3093, 1994. [8] M. A. Baten, W. C. Guss, K. E. Kreischer, R. J. Temkin, and M. Caplan, Int. J. Infr. Millimeter Wave, 16, 889, 1995. [9] A. K. Ganguly and S. Ahn, Int. J. Electronics, 67, 261, 1989. [10] T. A. Spencer, C. E. Davis, K. J. Hendricks, F. J. Agee and R. M. Gilgenbach, IEEE Trans. Plasma Sci. 4, 630, 1996. [11] C. S. Kou, C. H. Chen. and T. J. Wu, Phys. Rev. E. 57, 7162, 1998. [12] K. Ganguly and S. Ahn, Appl. Phys. Lett. 54, 514, 1989. [13] M. T. Walter, R. M. Gilgenbach, J. W. Luginsland, J. M. Hochman, J. I, Rintamaki, R. L. Jaynes, Y. Y. Lau, and T. A. Spencer, IEEE Trans. Plasma Sci. 24, 636, 1993. [14] A. T. Lin and C. C. Lin, Phys. Fluids B. 5, 2314, 1993. [15] G. S. Nusinovich, and O. Dumbrajs, IEEE Trans. Plasma Sci. 24, 620, 1996. [16] J. M. Wachtel and E. J. Wachtel, Appl. Phys. Lett, 34, 1059, 1980. [17] S. Y. Park, V. L. Granatstein, and R. K. Parker, Int. J. Electronics, 57, 1109, 1984. [18] A. K. Ganguly and S. Ahn, Appl. Phys. Lett, 54, 514, 1989. [19] A. T. Lin, Phys. Rev. A. 46,4516, 1992. [20] M. J. Arman, IEEE Trans. Plasma Sci. 26,693, 1998. [21] S. H. Chen, K. R. Chu, and T.H. Chang, Phys. Rev. Lett. 85, 2633, 2000. [22] T. H. Chang, S. H. Chen, L. R. Barnett and K. R. Chu, Phys. Rev. Lett. 87, 064802, 2001. [23] S. H. Chen, T. H. Chang, K. F. Pao, C. T. Fan and K. R. Chu, Phys. Rev. Lett. 89, 268303, 2002. [24] G. S. Nusinovich, A. N. Vlasov, and T. M. Antonsen, Jr., Phys. Rev. Lett. 87, 218301, 2001. [25] A. Grudiev and K. Schunemann, IEEE Trans. Plasma Sci. 30, 851, 2002. [26] N. S. Ginzburg, G. S. Nusinovich, and N. A. Zavolsky, Int. J. Electron. 61, 881, 1986. [27] A. T. Lin, Z. H. Yang, and K. R. Chu, IEEE Trans. Plasma Sci. 16, 129, 1988. [28] S. Y. Parker, R. H. Kyser, C. M. Armstrong, R. K. Parker and V.L. Granatstein, IEEE Trans. Plasma Sci. 18, 321, 1990. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57509 | - |
| dc.description.abstract | 起振電流與飽合效率是磁旋返波振盪器的關鍵物理量,分別對應到線性行為與飽合行為,其中電子群聚機制是影響起振電流與飽合效率的關鍵之一。藉由程式數值計算方法模擬電子與電磁波的交互作用,對起振電流與飽合效率做基本的探討,進而模擬出在高傳波常數下,角向群聚被軸向群聚的機制抵消,造成起振電流升高的情況。也模擬出在高傳波常數下,速度分散造成起振電流急遽升高的效應。 | zh_TW |
| dc.description.abstract | Start oscillation current (linear behavior) and efficiency (saturated behavior) are the key points of gyrotron backward-wave oscillators. The electron bunching mechanism plays an important role of start oscillation current and efficiency. By using the numerical method, the interaction of electrons and electromagnetic field are simulated. First, we simulate the basic behavior of start oscillation current and efficiency. Second we increase the parameter of magnetic field, and we find the azimuthal bunching mechanism is cancelled by the axial bunching mechanism. Therefore the start oscillation current increase. We also simulate the start oscillation current at high magnetic field at different velocity spread. We find the start oscillation current increase rapidly at high magnetic field if the velocity spread exists. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:49:11Z (GMT). No. of bitstreams: 1 ntu-103-R00222007-1.pdf: 2357605 bytes, checksum: 3acafed8401b60581e578a6c8ea316de (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 1
中文摘要 2 ABSTRACT 3 目錄 4 第一章 序論 6 1.1 磁旋管簡介 6 1.2 電子迴旋脈射原理 7 1.3 論文概述 9 第二章 非線性理論計算公式 10 2.1 電磁波的場方程式 10 2.2 電子動力學 13 2.3 電子初始分佈 16 2.4 邊界條件 17 2.5 轉換至慢速座標 18 第三章 磁旋返波振盪器特性分析 22 3.1 磁旋返波振盪器之基本原理與相關發展 22 3.2 磁旋返波振盪器之線性行為分析 24 3.3 磁旋返波振盪器之飽和行為分析 29 3.4 磁旋返波振盪器在高傳波常數下之線性與飽和行為分析 32 第四章 結論 34 文獻參考 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 起振電流 | zh_TW |
| dc.subject | 磁旋返波振盪器 | zh_TW |
| dc.subject | Gyrotron Backward-Wave Oscillator | en |
| dc.subject | Start oscillation current | en |
| dc.title | 磁旋返波振盪器在高傳波常數下的線性與非線性行為特性研究 | zh_TW |
| dc.title | Linear and Nonlinear Behaviors of Gyrotron Backward-Wave Oscillators at High Wave Number | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張存續,陳仕宏,陳寬任 | |
| dc.subject.keyword | 磁旋返波振盪器,起振電流, | zh_TW |
| dc.subject.keyword | Gyrotron Backward-Wave Oscillator,Start oscillation current, | en |
| dc.relation.page | 36 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
