請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57495完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹智強(Chih-Chiang Chan) | |
| dc.contributor.author | Cheng-Wen Hsieh | en |
| dc.contributor.author | 謝承彣 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:48:35Z | - |
| dc.date.available | 2024-12-31 | |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-24 | |
| dc.identifier.citation | Adams, M. D., S. E. Celniker, R. A. Holt, C. A. Evans, J. D. Gocayne et al., 2000 The genome sequence of Drosophila melanogaster. Science 287: 2185-2195.
Agami, P. M. V. a. R., 2003 <Knockdown stands up.pdf>. TRENDS in Biotechnology Vol.21 No.1 Pages 2–4. Barile, M., T. Pisitkun, M.-J. Yu, C.-L. Chou, M. J. Verbalis et al., 2005 Large Scale Protein Identification in Intracellular Aquaporin-2 Vesicles from Renal Inner Medullary Collecting Duct. Molecular & Cellular Proteomics 4: 1095-1106. Bem, D., S. Yoshimura, R. Nunes-Bastos, F. C. Bond, M. A. Kurian et al., 2011 Loss-of-function mutations in RAB18 cause Warburg micro syndrome. Am J Hum Genet 88: 499-507. Chan, C. C., S. Scoggin, D. Wang, S. Cherry, T. Dembo et al., 2011 Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr Biol 21: 1704-1715. Chintapalli, V. R., S. Terhzaz, J. Wang, M. Al Bratty, D. G. Watson et al., 2012 Functional correlates of positional and gender-specific renal asymmetry in Drosophila. PLoS One 7: e32577. Davies, S.-A., 2007 Nitric oxide signalling in insect epithelial transport. Advances in Experimental Biology 1: 83-455. Denholm, B., N. Hu, T. Fauquier, X. Caubit, L. Fasano et al., 2013 The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 140: 1100-1110. Dow, J. A., and M. F. Romero, 2010 Drosophila provides rapid modeling of renal development, function, and disease. Am J Physiol Renal Physiol 299: F1237-1244. Dow, J. A. T., S. H. P. Maddrell, A. GOrtz, N. J. V. Skaer, S. Brogan et al., 1994 The malpighian tubules of Drosophila melanogaster: A Novel Phenotype For Studies of Fluid Secretion and control. Experimental Biology 197: 421-428. Dow, J. T., and S. A. Davies, 2003 Integrative physiology and functional genomics of epithelial function in a genetic model organism. Physiol Rev 83: 687-729. Graf, E. R., R. W. Daniels, R. W. Burgess, T. L. Schwarz and A. DiAntonio, 2009 Rab3 dynamically controls protein composition at active zones. Neuron 64: 663-677. Handley, M. T., D. J. Morris-Rosendahl, S. Brown, F. Macdonald, C. Hardy et al., 2013 Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotype-phenotype correlations in warburg micro syndrome and Martsolf syndrome. Hum Mutat 34: 686-696. Ianowski, J. P., and M. J. O'Donnell, 2004 Basolateral ion transport mechanisms during fluid secretion by Drosophila Malpighian tubules: Na+ recycling, Na+:K+:2Cl- cotransport and Cl- conductance. J Exp Biol 207: 2599-2609. Jin, E. J., C. C. Chan, E. Agi, S. Cherry, E. Hanacik et al., 2012 Similarities of Drosophila rab GTPases based on expression profiling: completion and analysis of the rab-Gal4 kit. PLoS One 7: e40912. Jung, A. C., B. Denholm, H. Skaer and M. Affolter, 2005 Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16: 322-328. Jung, H. J., and T. H. Kwon, 2010 Membrane Trafficking of Collecting Duct Water Channel Protein AQP2 Regulated by Akt/AS160. Electrolyte Blood Press 8: 59-65. Kaufmann, N., J. C. Mathai, W. G. Hill, J. A. Dow, M. L. Zeidel et al., 2005 Developmental expression and biophysical characterization of a Drosophila melanogaster aquaporin. Am J Physiol Cell Physiol 289: C397-407. Lee, S. M., L. S. Chin and L. Li, 2012 Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. J Cell Biol 199: 799-816. Leiserson, W. M., B. Forbush and H. Keshishian, 2011 Drosophila glia use a conserved cotransporter mechanism to regulate extracellular volume. Glia 59: 320-332. M. J. O’Donnell, J. A. T. D., G. R. Huesmann, N. J. Tublitz and S. H. P. Maddrell, 1996 SEPARATE CONTROL OF ANION AND CATION TRANSPORT IN MALPIGHIAN. Journal of Experimental Biology: 1163-1175. Ma, T., Y. Song, B. Yang, A. Gillespie, E. J. Carlson et al., 2000 Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels. Proc Natl Acad Sci U S A 97: 4386-4391. Matthew R. MacPherson, V. P. P., Kate E. Broderick, Laura Kean, Fiona C. O'Connell, Julian A. T. Dow and Shireen A. Davies, 2001 L-type calcium channels regulate epithelial fluid transport in Drosophila melanogaster. American Journal of Physiology - Cell Physiology: Vol. 280no. C394-C407. Miller, J., T. Chi, P. Kapahi, A. J. Kahn, M. S. Kim et al., 2013 Drosophila melanogaster as an emerging translational model of human nephrolithiasis. J Urol 190: 1648-1656. Mulders, S. M., D. G. Bichet, J. P. Rijss, E. J. Kamsteeg, M. F. Arthus et al., 1998 An aquaporin-2 water channel mutant which causes autosomal dominant nephrogenic diabetes insipidus is retained in the Golgi complex. J Clin Invest 102: 57-66. O'Donnell, M. J., 2009 Too much of a good thing: how insects cope with excess ions or toxins in the diet. J Exp Biol 212: 363-372. Rodan, A. R., M. Baum and C. L. Huang, 2012 The Drosophila NKCC Ncc69 is required for normal renal tubule function. Am J Physiol Cell Physiol 303: C883-894. Saitou, N., and M. Nei, 1987 The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406-425. Spring, J. H., S. R. Robichaux, N. Kaufmann and J. L. Brodsky, 2007 Localization of a Drosophila DRIP-like aquaporin in the Malpighian tubules of the house cricket, Acheta domesticus. Comp Biochem Physiol A Mol Integr Physiol 148: 92-100. Takata, K., T. Matsuzaki, Y. Tajika, A. Ablimit and T. Hasegawa, 2008 Localization and trafficking of aquaporin 2 in the kidney. Histochem Cell Biol 130: 197-209. Terhzaz, S., P. Cabrero, J. H. Robben, J. C. Radford, B. D. Hudson et al., 2012 Mechanism and function of Drosophila capa GPCR: a desiccation stress-responsive receptor with functional homology to human neuromedinU receptor. PLoS One 7: e29897. Wang, D., C. C. Chan, S. Cherry and P. R. Hiesinger, 2013 Membrane trafficking in neuronal maintenance and degeneration. Cell Mol Life Sci 70: 2919-2934. Wang, J., L. Kean, J. Yang, A. K. Allan, S. A. Davies et al., 2004 Function-informed transcriptome analysis of Drosophila renal tubule. Genome Biol 5: R69. Yool, A. J., and E. M. Campbell, 2012 Structure, function and translational relevance of aquaporin dual water and ion channels. Mol Aspects Med 33: 553-561. Zhang, J., K. L. Schulze, P. R. Hiesinger, K. Suyama, S. Wang et al., 2007 Thirty-one flavors of Drosophila rab proteins. Genetics 176: 1307-1322. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57495 | - |
| dc.description.abstract | 水分的恆定是生物體維持生存不可或缺的要件之一。而腎臟排尿作用是個體排除體內水分的主要機制。對於未演化出完善腎臟的物種而言亦會發展出調控水分的器官,藉調控多數離子的通透來維持體液恆定,同時也將代謝廢物及有毒物質排出體外,免於個體受到危害。
黑腹果蠅 (Drosophila melanogaster)的馬氏管 (Malpighian tubules) 在功能上同等於脊椎動物的腎臟,調控離子的平衡及體液的滲透壓。馬氏管外觀細長,絕大部份片段由主細胞 (principal cells) 及星狀細胞 (stellate cells) 兩種細胞組成,主細胞上有許多運輸蛋白,可調控陽離子運輸;而星狀細胞缺少此主動運輸的機制。此兩類細胞亦含有大量的水通道蛋白,為可專一性通透水分子,調節滲透壓的重要渠道,然而相關研究對於馬氏管整體的運輸機轉並不完備,仍需更深一層的探討。 本篇的研究重點為馬氏管中Rab GTPase在水分運輸功能上所扮演的角色。Rab GTPase是一類控制細胞內膜狀囊胞運輸的蛋白,具有將不同蛋白質,例如水通道蛋白或離子通道蛋白經由內膜系統從內質網運輸至細胞膜上表現的功能,且在先前研究也已證實Rab GTPase具有組織專一性,會在不同的組織表現出不同Rab蛋白組合,行使特定功能。在這篇研究中,我們將範圍限縮至果蠅的馬氏管系統,探討兩種細胞上Rab蛋白的表現專一性,以及這些多樣的Rab蛋白是否與馬氏管的水分運輸有關。我們利用Gal4/UAS 系統,在受特定調控因子 (promoter) 的控制下活化下游UAS-CD8-GFP,得知Rab在馬氏管的表現形態,接著針對其中專一性表現在主細胞 (principal cells) 的Rab蛋白著手,抑制這些Rab蛋白的表現量,觀察果蠅的水分運輸能力變化,藉此分析這些Rab蛋白在調節水分運輸,體液滲透的生理功能及角色。 實驗結果顯示不同Rab蛋白在馬氏管的表現形態均有差異,且降低專一性表現在主細胞 (principal cells) 的Rab蛋白表現量,並無顯著影響該身體的水分含量。另外在特定抑制RabX4時,我們發現水分分泌能力會些微增加。同樣的現象在完全剔除其中4個Rab的情 結論,本篇論文利用基因轉殖果蠅,得知不同Rab蛋白在馬氏管不同部位的表現形態,且個別降低其中表現在主細胞的Rab蛋白表現量,並不會對馬氏管功能造成顯著影響。 | zh_TW |
| dc.description.abstract | Water homeostasis is an indispensable element for organism to maintain life. In human, water is taken from feeding and drinking, and then removed through sweating, excretion, and breath. Among with these, urination of kidney is the major mechanism to remove water from body fluid. For other species, which have no such complete organ like kidney, will develop other organs for maintaining water balance. These organs maintain fluid balance by regulating most ion channels, and then remove metabolic waste and toxin to prevent from disease.
The malpighian tubule system of the fruit fly Drosophila melanogaster is the functional equivalent to the vertebrate kidney that regulates ionic balance and fluid osmolality. Malpighian tubules are long, thin tubes comprised of two major cell types of distinct functions: the principal cells and the stellate cells. While the principal cells regulate transport of electrolytes, the morphology and previous evidence suggest that the stellate cells are not transport-active cells. There is a large number of aquaporins transported water in these two types of cell to regulate fluid osmolality. Although many kinds of aquaporin in malpighain tubules have been known, the mechanism about intracellular trafficking and function has not been comprehensive characterized. In this study, we investigated the role of Rab GTPase mediating water transport via Drosophila malpighian tubules. Rab GTPase are master regulators of intracellular membrane trafficking. While these proteins interact with different proteins, such as aquaporins and ion channels, they facilitate the delivery of transport vesicles from endoplasmic reticulum to plasma membrane. Previous publications have demonstrated that Rab proteins are tissue-specific. We, therefore, investigated whether Rab proteins also express specifically in two types of cell in malpighian tubules and regulate water homeostasis. Using of the Gal4-UAS technique, the Gal4-lines controlled by the regulatory elements of each rab gene drive the expression of wild-type GFP-tagged CD8 in malpighian tubules, so that the expression pattern of Rab proteins could be observed. Then, we focus on the principle-cell-specific Rab proteins and try to figure out whether interfering the expression of these Rabs influences water homeostasis in malpighian tubules. For this purpose, we analyzed several physiological functions like water secretion, water content, and uric acid accumulation in malpighian tubules. Here, we show that different Rabs have different forms of manifestations in malpighian tubules, and then we focus on the interesting Rabs which is only present in principle cell, not stellate cell. However, knocking down these principle-cell-specific Rabs wouldn’t influence water content of whole fly. Furthermore, down-regulating these expressions wouldn’t affect water secretion but RabX4. Moreover, these physiological phenotypes appear the similar result when Rabs are endogenous knock-out. In summary, these results demonstrate that different Rabs have different expression patterns in malpighian tubules, and reducing principle-cell-specific Rabs would not influence the water regulation in malpighian tubules. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:48:35Z (GMT). No. of bitstreams: 1 ntu-103-R01441016-1.pdf: 2843536 bytes, checksum: 60d81298223aa29d164d2f23d20485df (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 III 英文摘要 V 目 錄 VII 第一章 導論 1 一、 果蠅馬氏管 (malpighian tubules) 的簡介 1 1. 果蠅馬氏管模擬哺乳類動物腎臟功能 1 2. 馬氏管結構及兩類主要細胞形態功能 2 二、 水通道蛋白 (Aquaporins, AQP) 3 1. 果蠅水通道蛋白種類 4 2. 果蠅水通道蛋白結構與人類相似 4 三、 Rab蛋白調節細胞內囊狀胞器的運輸 5 1. Rab與膜結合的作用機制 5 2. Rab蛋白功能及分佈 5 3. 失去功能的Rab造成嚴重疾病 6 四、Rab對AQP的調控關係 6 五、水分調節相關生理現象 7 六、GAL4/UAS 系統 (GAL4/UAS system) 7 1. 運用原理 8 2. RNA干擾 (RNA interference, RNAi) 降低基因mRNA的表現 8 七、研究目的 9 第二章 材料與方法 10 一、基因轉殖果蠅之來源 (transgenic flies) 10 二、免疫組織化學染色法 (Immunohistochemistry,IHC) 10 三、果蠅身體含水量分析 (water content analysis) 11 四、馬氏管水分分泌量 (Ramsay assay) 11 五、果蠅體內尿酸含量分析 (uric acid assay) 12 六、馬氏管內尿素結晶觀察 13 第三章 結果 14 一、Rab蛋白在果蠅馬氏管的表現 14 二、降低Rab蛋白在馬氏管的表現影響生理功能 15 2-1果蠅身體含水量 15 2-2果蠅馬氏管水分分泌情形 16 2-3果蠅身體尿素含量 16 2-4 降低Rab在馬氏管內形成尿素結晶堆積 16 三、基因剃除Rab的突變株在馬氏管的生理影響 17 3-1果蠅馬氏管水分分泌情形 17 3-2果蠅馬式管尿素結晶情形 17 第四章 討論 18 一、 馬氏管中Rab表現多樣形態 18 二、降低rab在第一型細胞中的表現對水分調控的生理機制 20 三、基因剃除在第一型細胞中表現的rab對水分調控的生理機制 21 第五章 參考資料 23 表一、果蠅株及其來源清單 28 表二、Rab在main segment兩型細胞不同程度的表現 34 表三、降低專一性表現在第一型細胞的Rab的果蠅體重及身體含水量 36 圖一、胺基酸排序分析Drosophila aquaporin與人類 aquaporin 1-4親源性 37 圖二、分析果蠅水通道蛋白結構 40 圖三、專一性表現在第一型細胞 (Type-I cell) 的Rab蛋白在馬式管各段的表現形態 44 圖四、表現較多在第二型細胞 (Type-II cell) 的Rab蛋白在馬氏管各段的表現形態 47 圖五、表現在第一型和第二型細胞的Rab蛋白在馬氏管各段的表現形態 49 圖六、不會表現在馬氏管的Rab蛋白表現形態 53 圖七、降低專一性表現在第一型細胞的Rab對果蠅身體水分含量的影響 59 圖八、降低專一性表現在第一型細胞的Rab對水分分泌的影響 60 圖九、降低專一性表現在第一型細胞的Rab對果蠅尿酸含量的影響 61 圖十、降低tsh表現造成果蠅水腫 62 圖十一、馬式管main segment內降低Rab表現量的尿素結晶觀察 64 圖十二、基因剃除專一性表現在第一型細胞的Rab對水分分泌的影響 65 圖十三、馬氏管main segment內基因剃除Rab果蠅的尿素結晶觀察 66 附錄一、果蠅成蟲馬氏管形態示意圖 67 附錄二、4個DAQP大量表現在果蠅馬氏管中 68 附錄三、果蠅馬氏管水分分泌測量方法(Ramsay assay)示意圖 69 | |
| dc.language.iso | zh-TW | |
| dc.subject | 馬氏管 | zh_TW |
| dc.subject | Rab蛋白 | zh_TW |
| dc.subject | 水通道蛋白 | zh_TW |
| dc.subject | GAL4/UAS 系統 | zh_TW |
| dc.subject | 水分調節生理現象 | zh_TW |
| dc.subject | malpighian tubules | en |
| dc.subject | aquaporins | en |
| dc.subject | Rab GTPase | en |
| dc.subject | water homeostasis | en |
| dc.subject | GAL4/UAS system | en |
| dc.title | Rab蛋白透過果蠅腎管調控身體水分含量 | zh_TW |
| dc.title | Rab proteins mediate water content
via Drosophila renal tubules | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 余明俊(Ming-Jiun Yu),吳君泰(June-Tai Wu),林水龍(Shuei-Liong Lin) | |
| dc.subject.keyword | 馬氏管,Rab蛋白,水通道蛋白,GAL4/UAS 系統,水分調節生理現象, | zh_TW |
| dc.subject.keyword | malpighian tubules,aquaporins,Rab GTPase,GAL4/UAS system,water homeostasis, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
