請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57476完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 余家富(Chia-Fu Yu),余正道(Jeng-Daw Yu) | |
| dc.contributor.author | Tse-Chung Yang | en |
| dc.contributor.author | 楊策仲 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:47:44Z | - |
| dc.date.available | 2014-07-31 | |
| dc.date.copyright | 2014-07-31 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-25 | |
| dc.identifier.citation | [1] M. Borovoi, Abelianization of the second nonabelian Galois cohomology. Duke Math. J. 72 (1993), no. 1, 217-239.
[2] M. Borovoi, The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer. J. Reine Angew. Math. 473 (1996), 181-194. [3] M. Borovoi, A cohomological obstruction to the Hasse principle for homogeneous spaces. Math. Ann. 314 (1999), no. 3, 491-504. [4] Algebraic Number Theory. Edited by W.-S. Cassels and A. Fr ohlich. (Proc. Instructional Conf., Brighton, 1965). Academic Press, 366 pp. [5] P. Chuard-Koulmann and J. Morales, Extending involutions on Frobenius algebras. Manuscripta Math. 108 (2002), 439-451. [6] M. Eichler, Zur Zahlentheorie der Quaternionen-Algebren. J. Reine Angew. Math. 195 (1955), 127-151. [7] G. Harder, Bericht uber neuere Resultate der Galoiskohomologie halbeinfacher Gruppen. Jber. Deutsch. Math.Verein. 70 (1968), 182-216. [8] R. S. Pierce, Associative algebras. Graduate Texts in Mathematics, 88. Springer-Verlag, New York-Berlin, 1982. 436 pp. [9] G. Prasad and A. Rapinchuk, Computation of the metaplectic kernel. Inst. Hautes Etudes Sci. Publ. Math. 84 (1996), 91-187. [10] G. Prasad and A. Rapinchuk, Local-global principles for embedding of elds with involution into simple algebras with involution, Comment. Math. Helv. 85 (2010), 583-645. [11] A. S. Rapinchuk, The Hasse principle for symmetric spaces. Dokl. Akad. Nauk BSSR 31 (1987), 773-776. [12] I. Reiner, Maximal orders. London Mathematical Society Monographs, No. 5. Academic Press, London-New York, 1975. 395 pp. [13] J.-P. Serre, Local elds. GTM 67, Springer-Verlag, 1979. [14] T. A. Springer, Nonabelian H2 in Galois cohomology. Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965) pp. 164-182. [15] M.-F. Vign eras, Arithm etique des alg ebres de quaternions. Lecture Notes in Math., vol. 800, Springer-Verlag, 1980. [16] C.-F. Yu, Construction of Galois covers of curves with groups of SL2-type. C. R. Acad. Sci. Paris S er. I Math. 345 (2007), 77-80. [17] C.-F. Yu, Embeddings of elds into simple algebras: generalizations and applications. J. Algebra 368 (2012), 1-20. [18] H. Bass, Torsion free and projective modules. Trans. Amer. Math. Sci. 102 (1962) 319-327. [19] A. Brumer, Structures of hereditary orders, Bull. Amer. Math. Soc. 69 (1963), 721-724. addendum, ibid. 70 (1964), 185. [20] J. Brzezinski, On orders in quaternion algebras. Comm. Algebra 11 (1983), no. 5, 501-522. [21] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to nite groups and orders. Pure and Applied Mathematics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1981, 819 pp. [22] Ju. A. Drozd, V. V. Kiricenko, A. V. Roiter, Hereditary and Bass orders. Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967) 1415-1436. [23] C. Greither, On the two generator problem for the ideals of a one-dimensional ring. J. Pure Appl. Algebra 24 (1982), no. 3, 265-276. [24] H. Hijikata, A. Pizer and T. Shemanske, Orders in quaternion algebras. J. Reine Angew. Math. 394 (1989), 59-106. [25] H. Hijikata and K. Nishida, Classi cation of Bass orders. J. Reine Angew. Math. 431 (1992), 191-220. [26] H. Hijikata and K. Nishida, When is 1 2 hereditary? Osaka J. Math. 35 (1998), no. 3, 493-500. [27] G. J. Janusz, Tensor products of orders. J. London Math. Soc. (2) 20 (1979), no. 2, 186-192. [28] E. Kleinert, Which integral group rings are Bass orders? J. Algebra 129 (1990), no. 2, 380-392. [29] L. S. Levy and R. Wiegand, Dedekind-like behavior of rings with 2-generated ideals. J. Pure Appl. Algebra 37 (1985), no. 1, 41-58. [30] K. W. Roggenkamp, Lattices over orders. II. Lecture Notes in Mathematics, Vol. 142 Springer-Verlag, Berlin-New York 1970, 387 pp. [31] K. Roggenkamp, Bass-orders and the number of nonisomorphic indecomposable lattices over orders. Representation theory of nite groups and related topics (Proc. Sympos. Pure Math., Vol. XXI, 1970), pp. 127-135. Amer. Math. Soc., Providence, R.I., 1971. [32] M. F. Atiyah and I. G. Macdonald. Introduction to commutative algebra. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. [33] Hyman Bass. Torsion free and projective modules. Trans. Amer. Math. Soc., 102:319-327, 1962. [34] Z. I. Borevi c and D. K. Faddeev. Representations of orders with cyclic index. Trudy Mat. Inst. Steklov, 80:51-65,1965. [35] A. I. Borevich and I. R. Shafarevich. Number theory. Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20. Academic Press, New York, 1966. [36] P. E. Conner and J. Hurrelbrink. Class number parity, volume 8 of Series in Pure Mathematics. World Scienti c Publishing Co., Singapore, 1988. [37] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1990. With applications to nite groups and orders, Reprint of the 1981 original, A Wiley-Interscience Publication. [38] Hiroaki Hijikata. Explicit formula of the traces of Hecke operators for 0(N). J. Math. Soc. Japan, 26-56{82, 1974. [39] Taira Honda. Isogeny classes of abelian varieties over nite elds. J. Math. Soc. Japan, 20:83-95, 1968. [40] Kuniaki Horie and Mitsuko Horie. CM- elds and exponents of their ideal class groups. Acta Arith., 55(2):157-170, 1990. [41] Markus Kirschmer and John Voight. Algorithmic enumeration of ideal classes for quaternion orders. SIAM J. Comput., 39(5):1714-1747, 2010. [42] Otto K orner. Traces of Eichler-Brandt matrices and type numbers of quaternion orders. Proc. Indian Acad. Sci. Math. Sci., 97(1-3):189-199 (1988), 1987. [43] Serge Lang. Algebraic number theory, volume 110 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1994. [44] Daniel A. Marcus. Number elds. Springer-Verlag, New York, 1977. Universitext. [45] Thomas M. McCall, Charles J. Parry, and Ramona Ranalli. Imaginary bicyclic biquadratic elds with cyclic 2-class group. J. Number Theory, 53(1):88-99, 1995. [46] David Mumford. Abelian varieties, volume 5 of Tata Institute of Fundamental Research Studies in Mathematics. Published for the Tata Institute of Fundamental Research, Bombay, 2008. With appendices by C. P. Ramanujam and Yuri Manin, Corrected reprint of the second (1974) edition. [47] J urgen Neukirch. Algebraic number theory, volume 322 of Grundlehren der Mathematischen Wissenschaften [Fun- damental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1999. Translated from the 1992 German original and with a note by Norbert Schappacher, With a foreword by G. Harder. [48] Warut Roonguthai. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org/A130229, Aug. 2007. Primes p 5 (mod 8) such that the Diophantine equation x2 py2 = 4 has no solution in odd integers x; y. [49] John Tate. Classes d'isog enie des vari et es ab eliennes sur un corps ni (d'apr es T. Honda). In S eminaire Bourbaki. Vol. 1968/69: Expos es 347-363, volume 175 of Lecture Notes in Math., pages Exp. No. 352, 95-110. Springer,Berlin, 1971. [50] Lawrence C. Washington. Introduction to cyclotomic elds, volume 83 of Graduate Texts in Mathematics. Springer- Verlag, New York, second edition, 1997. [51] William C. Waterhouse. Abelian varieties over nite elds. Ann. Sci. Ecole Norm. Sup. (4), 2:521-560, 1969. [52] Fu-Tsun Wei and Chia-Fu Yu. Class numbers of de nite central simple algebras over global function functions. Int. Math. Res. Not., 51 pp., 2014. Available at http://dx.doi.org/10.1093/imrn/rnu038. [53] Chia-Fu Yu. Simple mass formulas on Shimura varieties of PEL-type. Forum Math., 22(3):565-582, 2010. [54] Chia-Fu Yu. Superspecial abelian varieties over nite prime elds. J. Pure Appl. Algebra, 216(6):1418-1427, 2012. [55] Don Zagier. On the values at negative integers of the zeta-function of a real quadratic eld. Enseignement Math. (2), 22(1-2):55-95, 1976. [56] Zhe Zhang and Qin Yue. Fundamental units of real quadratic elds of odd class number. J. Number Theory, 137:122-129, 2014. [57] J.-K. Yu, Cyclic orders. Preprint January 2013. 7 pp. (Notes prepared by C.-F. Yu). [58] S.-C. Shih, T.-C. Yang and C.-F. Yu, Embeddings of elds into simple algebras over global elds. Asian J. Math., 18(2014), 365-386. [59] T.-C. Yang and C.-F. Yu, Monomial, Gorenstein and Bass orders., arXiv:1308.6017, 13 pp. To appear J. Pure Appl. Algebra.(2014). [60] J. Xue, T.-C. Yang and C.-F. Yu, Supersingular abelian surfaces and Eichler class number formula, arXiv:1404.2978. 40 pp. Submitted(2014). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57476 | - |
| dc.description.abstract | 此篇論文主要分為三個部分;在第一個部分裡,我們考慮對於一個對於全球域F的有限維度的中心簡單代數A和一個對於此域F的有限擴張域K(可分擴張或者是不可分擴張),其中F的次數必須整除A的次數。我們給出了域F可以K-線性嵌入中心簡單代數A的充分必要條件,以及對於某一個K上的位v,局部域F_v可以K_v-線性嵌入中心簡單代數A_v的充分必要條件,然後給出了數值上對於一組$(K,A)$,哈瑟原則是否成立的判斷方法。
第二部分主要是探討對於一個局部域上有限維度的中心簡單代數上的秩序,並且討論在哪些條件之下,一個單項秩序會是一個巴斯秩序或者是一個古瑞斯丹秩序。事實上,我們發現如果是在一個上三角的單秩序條件下,埃奇勒秩序和古瑞斯丹秩序是一樣的。在一般條件之下,一個單項秩序是巴斯秩序充分必要條件是它是西利地特瑞秩序或者是周期為二的埃奇勒秩序。 最後一部分主要的目的是計算對應於p-韋伊數為根號p的簡單同源類的阿貝耳簇之同構類數目有多少,其中p為一個質數。此部分主要的工具是用到本田-塔特理論以及推廣後的埃奇勒類數公式。 | zh_TW |
| dc.description.abstract | This thesis is separated into three parts. In the first part, we consider a finite-dimensional central simple
algebra A over a global field F and a finite (separable or not) field extension K of F whose degree divides the degree of A over K. We give the necessary and sufficient condition for which the field K (resp. K_v) can be F-linearly (resp. F_v-linearly) embedded into A (resp. A_v). Here v is a place of F, and F_v denotes the completion of F at v, K_v:=Kotimes_F F_v and A_v:=A otimes_F F_v. This yields a more numerical criterion for a pair (K,A) for which Hasse principle holds or not. Secondly, we study a class of orders called monomial orders in a central simple algebra over a non-Archimedean local field and determine which monomial orders are Gorenstein or Bass orders. In fact, we can show that for upper triangular monomial orders, the sets of Gorenstein orders and Eichler orders are the same. For general case, a monomial order is Bass if and only if it is either a hereditary or an Eichler order of period two. The goal of the third part is to compute the number of mathbb{F}_p-isomorphism classes of abelian varieties in the simple isogeny class corresponding to the p-Weil number pi =sqrt{p}, where p is a prime integer. Main tools are the Honda-Tate theory and extended methods for Eichler's class number formula. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:47:44Z (GMT). No. of bitstreams: 1 ntu-103-D97221007-1.pdf: 950268 bytes, checksum: 94631391415b22bbe9c756009a51fdf4 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 致謝. . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract(English). . . . . . . . . . . . . . . . . . . . iv Chapter 1. Introduction . . . . . . . . . . . . . . . . . 3 Chapter 2. Embeddings of Fields into Simple Algebras over Global Fields . . . . . . . . . . . . . . . . . . . . . . 7 1. Introduction . . . . . . . . . . . . . . . . . . . . . 7 2. General embedding results . . . . . . . . . . . . . . 12 3. Answers to (Q1) and (Q2) by numerical invariants . . . 15 4. The local-global principle. . . . . . . . . . . . . . 23 5. A gluing result of embeddings . . . . . . . . . . . . 27 6. Hasse principle for homogeneous spaces. . . . . . . . 32 Chapter 3. Monomial orders, Gorenstein Orders, and Bass Orders. . . . . . . . . . . . . . . . . . . . . . . . . . 39 1. Introduction . . . . . . . . . . . . . . . . . . . . . 39 2. Monomial Orders. . . . . . . . . . . . . . . . . . . . 41 3. Gorenstein monomial orders . . . . . . . . . . . . . . 42 4. Upper triangular Gorenstein orders . . . . . . . . . . 47 5. Monomial orders and Bass orders. . . . . . . . . . . . 49 Chapter 4. Supersingular abelian surfaces and Eichler class number formula . . . . . . . . . . . . . . . . . . . . . 55 1. Introduction . . . . . . . . . . . . . . . . . . . . . 55 2. Preliminaries . . . . . . . . . . . . . . . . . . . . 58 3. Traces of Brandt matrices . . . . . . . . . . . . . . 62 4. Representation-theoretic interpretation of Brandt matrices. . . . . . . . . . . . . . . . . . . . . . . . . 73 5. Mass of Orders . . . . . . . . . . . . . . . . . . . . 75 6. Supersingular abelian surfaces . . . . . . . . . . . . 77 7. The fundamental unit in F = Q(sqrt{p}) . . . . . . . 85 8. Totally imaginary quadratic extensions K=F . . . . . . 88 9. OF -orders in K . . . . . . . . . . . . . . . . . . . 93 10. Quadratic proper Z[sqrt{p}]-orders in K . . . . . . 96 11. Tables . . . . . . . . . . . . . . . . . . . . . . . 102 Bibliography . . . . . . . . . . . . . . . . . . . . . . 105 | |
| dc.language.iso | en | |
| dc.subject | 韋伊數 | zh_TW |
| dc.subject | 阿貝耳簇 | zh_TW |
| dc.subject | 巴斯秩序 | zh_TW |
| dc.subject | 中央簡單代數 | zh_TW |
| dc.subject | 埃奇勒類數公式 | zh_TW |
| dc.subject | 埃奇勒秩序 | zh_TW |
| dc.subject | 古瑞斯丹秩序 | zh_TW |
| dc.subject | 哈瑟原則 | zh_TW |
| dc.subject | 西利地特瑞秩序 | zh_TW |
| dc.subject | 本田-塔特理論 | zh_TW |
| dc.subject | 單項秩序 | zh_TW |
| dc.subject | Honda-Tate theory | en |
| dc.subject | Bass order | en |
| dc.subject | abelian variety | en |
| dc.subject | central simple algebra | en |
| dc.subject | Eichler class number formula | en |
| dc.subject | Eichler order | en |
| dc.subject | Weil number | en |
| dc.subject | monomial order | en |
| dc.subject | Gorestein order | en |
| dc.subject | Hasse principle | en |
| dc.subject | hereditary order | en |
| dc.title | 秩序、體嵌入和埃奇勒類數公式 | zh_TW |
| dc.title | Orders, field embeddings and the Eichler class number formula | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 于靖(Jing Yu),謝銘倫(Ming-Lun Hsieh),楊一帆(Yi-Fan Yang) | |
| dc.subject.keyword | 阿貝耳簇,巴斯秩序,中央簡單代數,埃奇勒類數公式,埃奇勒秩序,古瑞斯丹秩序,哈瑟原則,西利地特瑞秩序,本田-塔特理論,單項秩序,韋伊數, | zh_TW |
| dc.subject.keyword | abelian variety,Bass order,central simple algebra,Eichler class number formula,Eichler order,Gorestein order,Hasse principle,hereditary order,Honda-Tate theory,monomial order,Weil number, | en |
| dc.relation.page | 108 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 928 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
