請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57466
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張麗冠 | |
dc.contributor.author | Hsiao-Chein Huang | en |
dc.contributor.author | 黃筱茜 | zh_TW |
dc.date.accessioned | 2021-06-16T06:47:19Z | - |
dc.date.available | 2019-08-13 | |
dc.date.copyright | 2014-08-13 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-25 | |
dc.identifier.citation | Abaitua F, O'Hare P (2008) Identification of a highly conserved, functional nuclear localization signal within the N-terminal region of herpes simplex virus type 1 VP1-2 tegument protein. J Virol 82: 5234-5244
Adams A, Bjursell G, Kaschka-Dierich C, Lindahl T (1977) Circular Epstein-Barr virus genomes of reduced size in a human lymphoid cell line of infectious mononucleosis origin. J Virol 22: 373-380 Allday MJ, Crawford DH, Griffin BE (1989) Epstein-Barr virus latent gene expression during the initiation of B cell immortalization. J Gen Virol 70 ( Pt 7): 1755-1764 Alpi AF, Pace PE, Babu MM, Patel KJ (2008) Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol Cell 32: 767-777 Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta 1695: 189-207 Amon W, Farrell PJ (2005) Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15: 149-156 Baer R, Bankier AT, Biggin MD, Deininger PL, Farrell PJ, Gibson TJ, Hatfull G, Hudson GS, Satchwell SC, Seguin C, et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310: 207-211 Baker TS, Newcomb WW, Booy FP, Brown JC, Steven AC (1990) Three-dimensional structures of maturable and abortive capsids of equine herpesvirus 1 from cryoelectron microscopy. J Virol 64: 563-573 Batisse J, Manet E, Middeldorp J, Sergeant A, Gruffat H (2005) Epstein-Barr virus mRNA export factor EB2 is essential for intranuclear capsid assembly and production of gp350. J Virol 79: 14102-14111 Beaudenon S, Huibregtse JM (2008) HPV E6, E6AP and cervical cancer. BMC Biochem 9 Suppl 1: S4 Bertani G (1951) Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62: 293-300 Booy FP, Trus BL, Newcomb WW, Brown JC, Conway JF, Steven AC (1994) Finding a needle in a haystack: detection of a small protein (the 12-kDa VP26) in a large complex (the 200-MDa capsid of herpes simplex virus). Proc Natl Acad Sci U S A 91: 5652-5656 Borza CM, Hutt-Fletcher LM (2002) Alternate replication in B cells and epithelial cells switches tropism of Epstein-Barr virus. Nat Med 8: 594-599 Boutell C, Sadis S, Everett RD (2002) Herpes simplex virus type 1 immediate-early protein ICP0 and is isolated RING finger domain act as ubiquitin E3 ligases in vitro. J Virol 76: 841-850 Burkitt D (1958) A sarcoma involving the jaws in African children. Br J Surg 46: 218-223 Burkitt D (1962) A children's cancer dependent on climatic factors. Nature 194: 232-234 Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR (2006) Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2: e23 Cardone G, Winkler DC, Trus BL, Cheng N, Heuser JE, Newcomb WW, Brown JC, Steven AC (2007) Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. Virology 361: 426-434 Caspar DL, Klug A (1962) Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol 27: 1-24 Chang LK, Lee YH, Cheng TS, Hong YR, Lu PJ, Wang JJ, Wang WH, Kuo CW, Li SS, Liu ST (2004) Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279: 38803-38812 Chang LK, Liu ST (2000) Activation of the BRLF1 promoter and lytic cycle of Epstein-Barr virus by histone acetylation. Nucleic Acids Res 28: 3918-3925 Chang PJ, Chang YS, Liu ST (1998) Characterization of the BcLF1 promoter in Epstein-Barr virus. J Gen Virol 79 : 2003-2006 Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243: 1576-1583 Cheung A, Kieff E (1982) Long internal direct repeat in Epstein-Barr virus DNA. J Virol 44: 286-294 Chiu YF, Tung CP, Lee YH, Wang WH, Li C, Hung JY, Wang CY, Kawaguchi Y, Liu ST (2007) A comprehensive library of mutations of Epstein Barr virus. J Gen Virol 88: 2463-2472 Crawford DH, Ando I (1986) EB virus induction is associated with B-cell maturation. Immunology 59: 405-409 Dambaugh T, Beisel C, Hummel M, King W, Fennewald S, Cheung A, Heller M, Raab-Traub N, Kieff E (1980) Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proc Natl Acad Sci U S A 77: 2999-3003 Demirov DG, Ono A, Orenstein JM, Freed EO (2002) Overexpression of the N-terminal domain of TSG101 inhibits HIV-1 budding by blocking late domain function. Proc Natl Acad Sci U S A 99: 955-960 Desai PJ (2000) A null mutation in the UL36 gene of herpes simplex virus type 1 results in accumulation of unenveloped DNA-filled capsids in the cytoplasm of infected cells. J Virol 74: 11608-11618 Deshaies RJ, Joazeiro CA (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78: 399-434 Devergne O, Cahir McFarland ED, Mosialos G, Izumi KM, Ware CF, Kieff E (1998) Role of the TRAF binding site and NF-kappaB activation in Epstein-Barr virus latent membrane protein 1-induced cell gene expression. J Virol 72: 7900-7908 Dolyniuk M, Pritchett R, Kieff E (1976a) Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17: 935-949 Dolyniuk M, Wolff E, Kieff E (1976b) Proteins of Epstein-Barr Virus. II. Electrophoretic analysis of the polypeptides of the nucleocapsid and the glucosamine- and polysaccharide-containing components of enveloped virus. J Virol 18: 289-297 Edward H, David L (1988) Antibodies: a laboratory manual: Cold Spring Harbor Laboratory. El-Guindy A, Ghiassi-Nejad M, Golden S, Delecluse HJ, Miller G (2013) Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J Virol 87: 208-223 Epstein MA, Achong BG, Barr YM (1964) Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet 1: 702-703 Epstein MA, Barr YM (1964) Cultivation in vitro of human lymphoblasts from Burkitt's malignant lymphoma. Lancet 1: 252-253 Everett RD, Meredith M, Orr A, Cross A, Kathoria M, Parkinson J (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. EMBO J 16: 1519-1530 Faggioni A, Zompetta C, Grimaldi S, Barile G, Frati L, Lazdins J (1986) Calcium modulation activates Epstein-Barr virus genome in latently infected cells. Science 232: 1554-1556 Farrell PJ, Rowe DT, Rooney CM, Kouzarides T (1989) Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J 8: 127-132 Fixman ED, Hayward GS, Hayward SD (1992) trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66: 5030-5039 Fixman ED, Hayward GS, Hayward SD (1995) Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. J Virol 69: 2998-3006 Fujii K, Yokoyama N, Kiyono T, Kuzushima K, Homma M, Nishiyama Y, Fujita M, Tsurumi T (2000) The Epstein-Barr virus pol catalytic subunit physically interacts with the BBLF4-BSLF1-BBLF2/3 complex. J Virol 74: 2550-2557 Galan JM, Haguenauer-Tsapis R (1997) Ubiquitin lys63 is involved in ubiquitination of a yeast plasma membrane protein. EMBO J 16: 5847-5854 Gao Z, Krithivas A, Finan JE, Semmes OJ, Zhou S, Wang Y, Hayward SD (1998) The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. J Virol 72: 8559-8567 Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE, Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI (2001) Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107: 55-65 Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, Di Guglielmo C, Masucci MG (2010) A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat Cell Biol 12: 351-361 Germi R, Effantin G, Grossi L, Ruigrok RW, Morand P, Schoehn G (2012) Three-dimensional structure of the Epstein-Barr virus capsid. J Gen Virol 93: 1769-1773 Geser A, de The G, Lenoir G, Day NE, Williams EH (1982) Final case reporting from the Ugandan prospective study of the relationship between EBV and Burkitt's lymphoma. Int J Cancer 29: 397-400 Gibson W, Roizman B (1972) Proteins specified by herpes simplex virus. 8. Characterization and composition of multiple capsid forms of subtypes 1 and 2. J Virol 10: 1044-1052 Given D, Yee D, Griem K, Kieff E (1979) DNA of Epstein-Barr virus. V. Direct repeats of the ends of Epstein-Barr virus DNA. J Virol 30: 852-862 Gonzalez CM, Wang L, Damania B (2009) Kaposi's sarcoma-associated herpesvirus encodes a viral deubiquitinase. J Virol 83: 10224-10233 Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59-74 Haglund K, Di Fiore PP, Dikic I (2003a) Distinct monoubiquitin signals in receptor endocytosis. Trends Biochem Sci 28: 598-603 Haglund K, Dikic I (2005) Ubiquitylation and cell signaling. EMBO J 24: 3353-3359 Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003b) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5: 461-466 Hampar B, Tanaka A, Nonoyama M, Derge JG (1974) Replication of the resident repressed Epstein-Barr virus genome during the early S phase (S-1 period) of nonproducer Raji cells. Proc Natl Acad Sci U S A 71: 631-633 He Z, Xin B, Yang X, Chan C, Cao L (2000) Nuclear factor-kappaB activation is involved in LMP1-mediated transformation and tumorigenesis of rat-1 fibroblasts. Cancer Res 60: 1845-1848 Henderson EE, Long WK (1981) Host cell reactivation of uv- and X-ray-damaged herpes simplex virus by Epstein-Barr virus (EBV)-transformed lymphoblastoid cell lines. Virology 115: 237-248 Henle G, Henle W (1966a) Immunofluorescence in cells derived from Burkitt's lymphoma. J Bacteriol 91: 1248-1256 Henle G, Henle W (1966b) Studies on cell lines derived from Burkitt's lymphoma. Trans N Y Acad Sci 29: 71-79 Henson BW, Perkins EM, Cothran JE, Desai P (2009) Self-assembly of Epstein-Barr virus capsids. J Virol 83: 3877-3890 Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67: 425-479 Hershko A, Heller H, Elias S, Ciechanover A (1983) Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J Biol Chem 258: 8206-8214 Hicke L (2001) Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol 2: 195-201 Hinuma Y, Konn M, Yamaguchi J, Wudarski DJ, Blakeslee JR, Jr., Grace JT, Jr. (1967) Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol 1: 1045-1051 Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30: 405-439 Holowaty MN, Frappier L (2004) HAUSP/USP7 as an Epstein-Barr virus target. Biochem Soc Trans 32: 731-732 Homa FL, Brown JC (1997) Capsid assembly and DNA packaging in herpes simplex virus. Rev Med Virol 7: 107-122 Huang TT, D'Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7: 323-334 Ikeda F, Dikic I (2008) Atypical ubiquitin chains: new molecular signals. 'Protein Modifications: Beyond the Usual Suspects' review series. EMBO Rep 9: 536-542 Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, Ou JH, Jung JU (2011) Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol 85: 10899-10904 Isaacson MK, Ploegh HL (2009) Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5: 559-570 Johannsen E, Luftig M, Chase MR, Weicksel S, Cahir-McFarland E, Illanes D, Sarracino D, Kieff E (2004) Proteins of purified Epstein-Barr virus. Proc Natl Acad Sci U S A 101: 16286-16291 Jovasevic V, Liang L, Roizman B (2008) Proteolytic cleavage of VP1-2 is required for release of herpes simplex virus 1 DNA into the nucleus. J Virol 82: 3311-3319 Kallin B, Luka J, Klein G (1979) Immunochemical characterization of Epstein-Barr virus-associated early and late antigens in n-butyrate-treated P3HR-1 cells. J Virol 32: 710-716 Kattenhorn LM, Korbel GA, Kessler BM, Spooner E, Ploegh HL (2005) A deubiquitinating enzyme encoded by HSV-1 belongs to a family of cysteine proteases that is conserved across the family Herpesviridae. Mol Cell 19: 547-557 Kennedy G, Sugden B (2003) EBNA-1, a bifunctional transcriptional activator. Mol Cell Biol 23: 6901-6908 Kim ET, Oh SE, Lee YO, Gibson W, Ahn JH (2009) Cleavage specificity of the UL48 deubiquitinating protease activity of human cytomegalovirus and the growth of an active-site mutant virus in cultured cells. J Virol 83: 12046-12056 Klein G, Giovanella B, Westman A, Stehlin JS, Mumford D (1975) An EBV-genome-negative cell line established from an American Burkitt lymphoma; receptor characteristics. EBV infectibility and permanent conversion into EBV-positive sublines by in vitro infection. Intervirology 5: 319-334 Komander D (2009) The emerging complexity of protein ubiquitination. Biochem Soc Trans 37: 937-953 Komander D (2010) Mechanism, specificity and structure of the deubiquitinases. Subcell Biochem 54: 69-87 Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10: 550-563 Lee JI, Luxton GW, Smith GA (2006) Identification of an essential domain in the herpesvirus VP1/2 tegument protein: the carboxy terminus directs incorporation into capsid assemblons. J Virol 80: 12086-12094 Lemon SM, Hutt LM, Shaw JE, Li JL, Pagano JS (1977) Replication of EBV in epithelial cells during infectious mononucleosis. Nature 268: 268-270 Lindner SE, Zeller K, Schepers A, Sugden B (2008) The affinity of EBNA1 for its origin of DNA synthesis is a determinant of the origin's replicative efficiency. J Virol 82: 5693-5702 Liu F, Roizman B (1993) Characterization of the protease and other products of amino-terminus-proximal cleavage of the herpes simplex virus 1 UL26 protein. J Virol 67: 1300-1309 Liu P, Speck SH (2003) Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310: 199-206 Luka J, Kallin B, Klein G (1979) Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94: 228-231 Mammas IN, Sourvinos G, Giannoudis A, Spandidos DA (2008) Human papilloma virus (HPV) and host cellular interactions. Pathol Oncol Res 14: 345-354 Manet E, Gruffat H, Trescol-Biemont MC, Moreno N, Chambard P, Giot JF, Sergeant A (1989) Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. EMBO J 8: 1819-1826 Matusick-Kumar L, Newcomb WW, Brown JC, McCann PJ, 3rd, Hurlburt W, Weinheimer SP, Gao M (1995) The C-terminal 25 amino acids of the protease and its substrate ICP35 of herpes simplex virus type 1 are involved in the formation of sealed capsids. J Virol 69: 4347-4356 Maurer BA, Wilbert SM, Imamura T (1970) Incidence of EB virus-containing cells in primary and secondary clones of several Burkitt lymphoma cell lines. Cancer Res 30: 2870-2875 Miller G, Lipman M (1973) Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A 70: 190-194 Morrison EE, Stevenson AJ, Wang YF, Meredith DM (1998) Differences in the intracellular localization and fate of herpes simplex virus tegument proteins early in the infection of Vero cells. J Gen Virol 79 : 2517-2528 Mukhopadhyay D, Riezman H (2007) Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315: 201-205 Murata T, Tsurumi T (2014) Switching of EBV cycles between latent and lytic states. Rev Med Virol 24: 142-153 Muratani M, Tansey WP (2003) How the ubiquitin-proteasome system controls transcription. Nat Rev Mol Cell Biol 4: 192-201 Newcomb WW, Brown JC (1991) Structure of the herpes simplex virus capsid: effects of extraction with guanidine hydrochloride and partial reconstitution of extracted capsids. J Virol 65: 613-620 Newcomb WW, Homa FL, Brown JC (2005) Involvement of the portal at an early step in herpes simplex virus capsid assembly. J Virol 79: 10540-10546 Newcomb WW, Homa FL, Thomsen DR, Booy FP, Trus BL, Steven AC, Spencer JV, Brown JC (1996) Assembly of the herpes simplex virus capsid: characterization of intermediates observed during cell-free capsid formation. J Mol Biol 263: 432-446 Newcomb WW, Thomsen DR, Homa FL, Brown JC (2003) Assembly of the herpes simplex virus capsid: identification of soluble scaffold-portal complexes and their role in formation of portal-containing capsids. J Virol 77: 9862-9871 Newcomb WW, Trus BL, Booy FP, Steven AC, Wall JS, Brown JC (1993) Structure of the herpes simplex virus capsid. Molecular composition of the pentons and the triplexes. J Mol Biol 232: 499-511 Niederman JC, McCollum RW, Henle G, Henle W (1968) Infectious mononucleosis. Clinical manifestations in relation to EB virus antibodies. JAMA 203: 205-209 Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123: 773-786 Nilsson K, Klein G, Henle W, Henle G (1971) The establishment of lymphoblastoid lines from adult and fetal human lymphoid tissue and its dependence on EBV. Int J Cancer 8: 443-450 Ovaa H, Kessler BM, Rolen U, Galardy PJ, Ploegh HL, Masucci MG (2004) Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc Natl Acad Sci U S A 101: 2253-2258 Peng L, Ryazantsev S, Sun R, Zhou ZH (2010) Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18: 47-58 Perdue ML, Cohen JC, Randall CC, O'Callaghan DJ (1976) Biochemical studies of the maturation of herpesvirus nucleocapsid species. Virology 74: 194-208 Pertel T, Hausmann S, Morger D, Zuger S, Guerra J, Lascano J, Reinhard C, Santoni FA, Uchil PD, Chatel L, Bisiaux A, Albert ML, Strambio-De-Castillia C, Mothes W, Pizzato M, Grutter MG, Luban J (2011) TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472: 361-365 Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304: 734-736 Pham AD, Sauer F (2000) Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289: 2357-2360 Pickart CM (2000) Ubiquitin in chains. Trends Biochem Sci 25: 544-548 Pickart CM (2001) Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503-533 Quinlivan EB, Holley-Guthrie EA, Norris M, Gutsch D, Bachenheimer SL, Kenney SC (1993) Direct BRLF1 binding is required for cooperative BZLF1/BRLF1 activation of the Epstein-Barr virus early promoter, BMRF1. Nucleic Acids Res 21: 1999-2007 Ragoczy T, Heston L, Miller G (1998) The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. J Virol 72: 7978-7984 Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78: 363-397 Rixon FJ (1993) Structure and assembly of herpesviruses. Seminars in Virology 4: 135-144 Roberts AP, Abaitua F, O'Hare P, McNab D, Rixon FJ, Pasdeloup D (2009) Differing roles of inner tegument proteins pUL36 and pUL37 during entry of herpes simplex virus type 1. J Virol 83: 105-116 Robzyk K, Recht J, Osley MA (2000) Rad6-dependent ubiquitination of histone H2B in yeast. Science 287: 501-504 Rochat RH, Liu X, Murata K, Nagayama K, Rixon FJ, Chiu W (2011) Seeing the portal in herpes simplex virus type 1 B capsids. J Virol 85: 1871-1874 Saito S, Murata T, Kanda T, Isomura H, Narita Y, Sugimoto A, Kawashima D, Tsurumi T (2013) Epstein-Barr virus deubiquitinase downregulates TRAF6-mediated NF-kappaB signaling during productive replication. J Virol 87: 4060-4070 Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G (2002) Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 21: 5206-5215 Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL (2005) A deubiquitinating activity is conserved in the large tegument protein of the herpesviridae. J Virol 79: 15582-15585 Schnell JD, Hicke L (2003) Non-traditional functions of ubiquitin and ubiquitin-binding proteins. J Biol Chem 278: 35857-35860 Schulman BA, Harper JW (2009) Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat Rev Mol Cell Biol 10: 319-331 Schuster C, Chasserot-Golaz S, Beck G (1991) Activation of Epstein-Barr virus promoters by a growth-factor and a glucocorticoid. FEBS Lett 284: 82-86 Serio TR, Cahill N, Prout ME, Miller G (1998) A functionally distinct TATA box required for late progression through the Epstein-Barr virus life cycle. J Virol 72: 8338-8343 Shanda SK, Wilson DW (2008) UL36p is required for efficient transport of membrane-associated herpes simplex virus type 1 along microtubules. J Virol 82: 7388-7394 Shibata D, Weiss LM (1992) Epstein-Barr virus-associated gastric adenocarcinoma. Am J Pathol 140: 769-774 Shin YC, Tang SJ, Chen JH, Liao PH, Chang SC (2011) The molecular determinants of NEDD8 specific recognition by human SENP8. PLoS One 6: e27742 Sigismund S, Polo S, Di Fiore PP (2004) Signaling through monoubiquitination. Curr Top Microbiol Immunol 286: 149-185 Sixbey JW, Nedrud JG, Raab-Traub N, Hanes RA, Pagano JS (1984) Epstein-Barr virus replication in oropharyngeal epithelial cells. N Engl J Med 310: 1225-1230 Sixbey JW, Vesterinen EH, Nedrud JG, Raab-Traub N, Walton LA, Pagano JS (1983) Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306: 480-483 Sompallae R, Gastaldello S, Hildebrand S, Zinin N, Hassink G, Lindsten K, Haas J, Persson B, Masucci MG (2008) Epstein-barr virus encodes three bona fide ubiquitin-specific proteases. J Virol 82: 10477-10486 Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15: 1265-1273 Spencer JV, Newcomb WW, Thomsen DR, Homa FL, Brown JC (1998) Assembly of the herpes simplex virus capsid: preformed triplexes bind to the nascent capsid. J Virol 72: 3944-3951 Steven AC, Roberts CR, Hay J, Bisher ME, Pun T, Trus BL (1986) Hexavalent capsomers of herpes simplex virus type 2: symmetry, shape, dimensions, and oligomeric status. J Virol 57: 578-584 Steven AC, Spear PG (1996) Herpesvirus capsid assembly and envelopment. In, Structural Biology of Viruses, ed by R Burnett, W Chiu and R Garcea Oxford University Press, New York: 312-351 Tatman JD, Preston VG, Nicholson P, Elliott RM, Rixon FJ (1994) Assembly of herpes simplex virus type 1 capsids using a panel of recombinant baculoviruses. J Gen Virol 75 : 1101-1113 Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1: 193-202 Thomsen DR, Roof LL, Homa FL (1994) Assembly of herpes simplex virus (HSV) intermediate capsids in insect cells infected with recombinant baculoviruses expressing HSV capsid proteins. J Virol 68: 2442-2457 Thorley-Lawson DA (2001) Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol 1: 75-82 Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19: 94-102 Tokunaga F, Iwai K (2012) LUBAC, a novel ubiquitin ligase for linear ubiquitination, is crucial for inflammation and immune responses. Microbes Infect 14: 563-572 Tovey MG, Lenoir G, Begon-Lours J (1978) Activation of latent Epstein-Barr virus by antibody to human IgM. Nature 276: 270-272 Trus BL, Cheng N, Newcomb WW, Homa FL, Brown JC, Steven AC (2004) Structure and polymorphism of the UL6 portal protein of herpes simplex virus type 1. J Virol 78: 12668-12671 Tsurumi T, Fujita M, Kudoh A (2005) Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol 15: 3-15 van Gent M, Braem SG, de Jong A, Delagic N, Peeters JG, Boer IG, Moynagh PN, Kremmer E, Wiertz EJ, Ovaa H, Griffin BD, Ressing ME (2014) Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 10: e1003960 Vroman B, Luka J, Rodriguez M, Pearson GR (1985) Characterization of a major protein with a molecular weight of 160,000 associated with the viral capsid of Epstein-Barr virus. J Virol 53: 107-113 Wang S, Wang K, Li J, Zheng C (2013) Herpes simplex virus 1 ubiquitin-specific protease UL36 inhibits beta interferon production by deubiquitinating TRAF3. J Virol 87: 11851-11860 Wang WH, Chang LK, Liu ST (2011) Molecular interactions of Epstein-Barr virus capsid proteins. J Virol 85: 1615-1624 Weiss LM, Movahed LA, Warnke RA, Sklar J (1989) Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin's disease. N Engl J Med 320: 502-506 Welchman RL, Gordon C, Mayer RJ (2005) Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6: 599-609 Whitehurst CB, Ning S, Bentz GL, Dufour F, Gershburg E, Shackelford J, Langelier Y, Pagano JS (2009) The Epstein-Barr virus (EBV) deubiquitinating enzyme BPLF1 reduces EBV ribonucleotide reductase activity. J Virol 83: 4345-4353 Whitehurst CB, Vaziri C, Shackelford J, Pagano JS (2012) Epstein-Barr virus BPLF1 deubiquitinates PCNA and attenuates polymerase eta recruitment to DNA damage sites. J Virol 86: 8097-8106 Wingfield PT, Stahl SJ, Thomsen DR, Homa FL, Booy FP, Trus BL, Steven AC (1997) Hexon-only binding of VP26 reflects differences between the hexon and penton conformations of VP5, the major capsid protein of herpes simplex virus. J Virol 71: 8955-8961 Wolf H, zur Hausen H, Becker V (1973) EB viral genomes in epithelial nasopharyngeal carcinoma cells. Nat New Biol 244: 245-247 Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ (2009) Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461: 114-119 Yang K, Homa F, Baines JD (2007) Putative terminase subunits of herpes simplex virus 1 form a complex in the cytoplasm and interact with portal protein in the nucleus. J Virol 81: 6419-6433 Yates JL, Warren N, Sugden B (1985) Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313: 812-815 Ye Y, Rape M (2009) Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 10: 755-764 Yenamandra SP, Klein G, Kashuba E (2009) Nuclear receptors and their role in Epstein - Barr virus induced B cell transformation. Exp Oncol 31: 67-73 Yokoyama N, Fujii K, Hirata M, Tamai K, Kiyono T, Kuzushima K, Nishiyama Y, Fujita M, Tsurumi T (1999) Assembly of the epstein-barr virus BBLF4, BSLF1 and BBLF2/3 proteins and their interactive properties. J Gen Virol 80 : 2879-2887 Young LS, Rickinson AB (2004) Epstein-Barr virus: 40 years on. Nat Rev Cancer 4: 757-768 Zhou ZH, He J, Jakana J, Tatman JD, Rixon FJ, Chiu W (1995) Assembly of VP26 in herpes simplex virus-1 inferred from structures of wild-type and recombinant capsids. Nat Struct Biol 2: 1026-1030 zur Hausen H, O'Neill FJ, Freese UK, Hecker E (1978) Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature 272: 373-375 王文宏 (2011) Involvement of BORF1 and BDLF1 in the assembly of the Epstein-Barr virus nucleocapsid. 長庚大學基礎醫學研究所博士論文 李宇群 (2012) Involvement of MCAF1 in Epstein-Barr virus lytic replication. 臺灣大學生命科學院生化科技學系碩士論文 林庭羽 (2013) Functional analysis of BSLF1 of Epstein-Barr virus. 臺灣大學生命科學院生化科技學系碩士論文 徐詩媁 (2013) Role of TRIM5-alpha in the lytic progression of Epstein-Barr virus. 臺灣大學生命科學院生化科技系碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57466 | - |
dc.description.abstract | Epstein-Barr virus (EB病毒) 屬於人類皰疹病毒科,與上皮細胞及淋巴的惡性腫瘤與鼻咽癌有密切關係,其生活史包含了潛伏期和溶裂期,病毒感染細胞後以潛伏期的情況在細胞中,當受到特定因子刺激後,會誘導病毒進入溶裂循環。在溶裂循環時期,病毒會開始複製其遺傳物質及病毒蛋白質,而病毒蛋白質依照表現的先後順序可以分為極早期蛋白質、早期蛋白質及晚期蛋白質,並且透過這些蛋白質包裹遺傳物質,組裝形成病毒顆粒。泛素化修飾在病毒的複製及感染中扮演重要的角色,而許多的病毒蛋白質都可以被泛素修飾,甚至是身為泛素化修飾中酵素的一員,而本篇研究中的BSLF1為EB病毒的複製蛋白質且已被報導具有去泛素化 (deubiquitinase, DUB) 的活性。本研究利用純化出的BSLF1抗體,發現細胞被誘導進入溶裂期後十二到四十八小時BSLF1都有表現,並以免疫螢光染色觀察其在細胞中的分佈。接著利用In vitro DUB assay確認BSLF1具有去泛素化的活性。然後以共免疫沉澱分析發現BSLF1會與EB病毒的外鞘蛋白BFRF3及BORF1有交互作用,並且以GST pulldown assay發現BSLF1與BFRF3有直接的交互作用,且可以讓BFRF3的蛋白質較穩定,顯示BSLF1可以將BFRF3去泛素化,不會被送到proteasome降解。最後,設計了一系列的BSLF1截切突變株,發現所有突變株都可以與BFRF3結合,但只有BSLF1-N710還具有去泛素化的活性,而N540及N640則否,因此推論BSLF1的第640到710胺基酸對於去泛素活性是重要的。以上結果顯示,具有去泛素化活性的BSLF1可以藉由與外鞘蛋白BFRF3的交互作用,使得BFRF3被去泛素化而趨於穩定,因為外鞘蛋白質的穩定性提高,可能使得EB病毒顆粒釋出的量也隨之增加。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a human herpesvirus that infects up to 90% population and causes malignancies such as Burkitt’s lymphoma, nasopharyngeal carcinoma, and lymphoproliferative diseases. This virus contains two distinct life cycles, and is usually maintained under latent conditions after infection, and turns to the lytic phase after lytic induction. During the lytic phase, the virus encodes immediate-early, early, and late genes to produce virus particles. BSLF1 encodes a primase, which is required for lytic DNA replication. Previous study showed that BSLF1 contains deubiquitinase (DUB) activity. In this study, we aim to find the effects of BSLF1 on capsid proteins of EBV. This study finds that BSLF1 is expressed at 24 hrs after lytic induction. In vitro DUB assay revealed that BSLF1 contains DUB activity. Moreover, immunoprecipitation indicated that BSLF1 interacts with two EBV capsid proteins, BFRF3 and BORF1. Futhermore, GST pulldown assay shows that BSLF1 interacts with BFRF3 directly. BSLF1 overexpression reduces the levels of ubiquitinated BFRF3 and BORF1, thereby increasing the stability of BFRF3. Deletion analysis of BSLF1 showed that the region between amino acid 640 and 710 is important to the DUB activity on BFRF3. Taken together, BSLF1 plays a critical role on stabilizing the capsid proteins. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:47:19Z (GMT). No. of bitstreams: 1 ntu-103-R01b22037-1.pdf: 2754584 bytes, checksum: 9260d914b1e2abba8d10572a5e79ab3d (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 目錄
致謝 i 中文摘要 ii Abstract iii 目錄 v 圖表目錄 vii 附錄目錄 viii 壹、前言 1 一、EB病毒的發現 1 二、EB病毒的致病性 1 三、EB病毒的結構 2 四、EB病毒的生活史 3 五、皰疹病毒的外鞘殼體 5 六、泛素化修飾與去泛素化修飾 8 七、病毒與宿主泛素化系統的交互作用 10 貳、研究目的 15 參、材料與方法 16 一、細胞株 (cell line) 及EB病毒的溶裂期誘導 16 二、質體與抗體 16 三、質體DNA萃取 16 四、細胞轉染 (cell transfecction) 17 五、大腸桿菌轉型作用 (transformation) 17 六、蛋白質的誘導表現 17 七、GST融合蛋白質 (Glutathione S-transferase fusion proteins) 的表現與純化 18 八、抗原親和性層析純化抗體 (Antibody purification with antigen affinity chromatography) 18 九、胞外去泛素化酵素活性分析 (in vitro deubiquitination assay) 19 十、GST pull-down分析 (Glutathione S-transferase pull-down assay) 19 十一、免疫沉澱分析 (Immunoprecipitation) 20 十二、變性免疫沉澱分析 (Denatre immunoprecipitation) 20 十三、免疫螢光染色分析 (Immunofluorescence analysis) 21 十四、西方點墨法分析 (Wesatern blot analysis) 21 十五、SDS-PAGE膠體蛋白質染色分析 22 肆、結果 23 一、抗BSLF1抗體的純化 23 二、以抗BSLF1抗體偵測BSLF1蛋白質 24 三、BSLF1在EB病毒溶裂期的表現與在細胞內的分佈位置 24 四、BSLF1與EB病毒外鞘蛋白質在細胞內的結合 25 五、BSLF1與BFRF3在細胞體外的直接結合 26 六、BSLF1會將BFRF3和BORF1去泛素化 26 七、BSLF1的刪除突變株與BFRF3的結合關係 29 八、BSLF1的刪除突變株對於BFRF3去泛素化的影響 29 九、BSLF1對於BFRF3穩定性的影響 30 伍、討論 31 BSLF1於P3HR1及B95.8細胞溶裂期的表現時間點及分佈位置 31 BSLF1與BFRF3及BORF1外鞘蛋白質的結合 33 BSLF1降低BFRF3及BORF1外鞘蛋白質的泛素化程度 33 BSLF1能使BFRF3的穩定性增加 35 陸、圖表 36 柒、附錄 59 捌、參考文獻 67 | |
dc.language.iso | zh-TW | |
dc.title | EB病毒的BSLF1蛋白質對於外鞘蛋白質的影響 | zh_TW |
dc.title | Effects of BSLF1 on capsid proteins of Epstein-Barr virus | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 劉世東,張沛鈞,莊健盈,張世宗 | |
dc.subject.keyword | EB病毒,BSLF1,去泛素化,deubiquitinase,外鞘蛋白質,BFRF3,BORF1, | zh_TW |
dc.subject.keyword | Epstein-Barr Virus (EBV),BSLF1,deubiquitinase (DUB),capsid proteins,BFRF3,BORF1, | en |
dc.relation.page | 82 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-07-25 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。