Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57433
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李允中(Jonathan Lee)
dc.contributor.authorMeng-Fu Shihen
dc.contributor.author施孟甫zh_TW
dc.date.accessioned2021-06-16T06:45:54Z-
dc.date.available2019-07-29
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citation[1] Charles L Forgy and Susan J Shepard. 1987. Rete: a fast match algorithm. AI Expert 2, 1 (January 1987), 34-40.
[2] A. Gupta, C. Forgy, A. Newell, and R. Wedig. 1986. Parallel algorithms and architectures for rule-based systems. In Proceedings of the 13th annual international symposium on Computer architecture (ISCA '86). IEEE Computer Society Press, Los Alamitos, CA, USA, 28-37.
[3] T. Ishida. 1991. Parallel Rule Firing in Production Systems. IEEE Trans. on Knowl. and Data Eng. 3, 1 (March 1991), 11-17. DOI=10.1109/69.75883 http://dx.doi.org/10.1109/69.75883
[4] Ching-Chi Hsu and Feng-Hsu Wang. 1989. The search ahead conflict resolution for parallel firing of production systems. In Proceedings of the 11th international joint conference on Artificial intelligence - Volume 1 (IJCAI'89), Vol. 1. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 91-96.
[5] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1 (January 2008), 107-113. DOI=10.1145/1327452.1327492 http://doi.acm.org/10.1145/1327452.1327492
[6] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation (NSDI'12). USENIX Association, Berkeley, CA, USA, 2-2.
[7] Peters, M., Brink, C., Sachweh, S., & Zundorf, A. (2014). Scaling Parallel Rule-Based Reasoning. In The Semantic Web: Trends and Challenges (pp. 270-285). Springer International Publishing.
[8] Bin Cao, Jianwei Yin, Qi Zhang, and Yanming Ye. 2010. A MapReduce-Based Architecture for Rule Matching in Production System. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science (CLOUDCOM '10). IEEE Computer Society, Washington, DC, USA, 790-795. DOI=10.1109/CloudCom.2010.11 http://dx.doi.org/10.1109/CloudCom.2010.11
[9] Neiman, D. E. (1992). Design and control of parallel rule-firing production systems (Doctoral dissertation, University of Massachusetts).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57433-
dc.description.abstract本論文提出一個新的平行化方法,加速目前最有名的Production System 演算法:RETE。從 CPU 中常用的方法中,發現我們可以將Pipeline 的技術應用在 RETE 匹配演算法、Conflict Resolution、平行執行中。基本想法雖然簡單,但實作上會碰到一些問題,例如:資料互相干擾、語境管理等等問題。
在我們的方法中,首先我們把從 Drools 系統取得的 RETE 網路轉換成適合 Pipeline 演算法運行的版本。再來使用我們新設計的 runtime 以 Pipeline 的形式執行 Fact Propagation。我們使用Spark 實作此演算法。因分散式平行系統Spark能直接在記憶體中執行。在我們的實驗結果中,我們發現在 pipeline 技術的幫助下,我們可以減少運行跌代次數。
本論文敘述我們提出的方法、設計、我們如何解決碰到的問題以及實作上的細節。
zh_TW
dc.description.abstractThis thesis purposes a novel parallel method to speed up the most famous production system algorithm: RETE. Inspired by the pipeline method commonly used in CPU, we apply the pipeline concept to the RETE matching algorithm and also the steps of conflict resolution and parallel firing. This idea is simple, but there are several problems that exist to apply the pipeline technology such as the data interference problem and the context management of each phase of the pipeline.
In our approach, we convert the RETE created by Drools to the version needed by our pipeline algorithm. We also create a new runtime that perform the propagation with pipeline manner. We consider the distributed parallel programming system Spark as our platform of implementation, according to the properties: in-memory, distributed. In our experiment, we found that this method can reduce the iteration of execution.
The thesis describes the methodology, the design, the problem we conquered and the implementation of our approach.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:45:54Z (GMT). No. of bitstreams: 1
ntu-103-R00922054-1.pdf: 2031112 bytes, checksum: 8657556b6d15e24eac259dfe44cb88e3 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsACKNOWLEDGEMENTS i
摘要 ii
ABSTRACT iii
List of figures vii
1 INTRODUCTION 1
1.1 Motivation 2
2 BACKGROUND KNOWLEDGE 3
2.1 The Production System 3
2.1.1 The RETE Network 3
2.1.2 Conflict Resolve 5
2.2 The Parallel Programming Environments 5
2.2.1 Hadoop 6
2.2.2 Spark 7
2.3 Spark and Pipeline 7
3 RELATED WORKS 8
3.1 Matching Parallelization 8
3.1.1 Scaling Parallel Rule-based Reasoning 9
3.1.2 A MapReduce-based architecture for rule matching in production system 9
3.2 Parallel Firing 9
3.3 Others 9
3.3.1 The Serialization Problems 9
3.3.2 Parallel Algorithms and Architectures for Rule-Based Systems 10
4 METHODOLOGY 11
4.1 Issues 11
4.1.1 Parallel execution and data sharing 11
4.1.2 Data interference problem 11
4.2 Our Approach 12
4.2.1 Definitions 12
4.2.2 The Concept 15
5 DESIGN AND IMPLEMENTATION 18
5.1 Construction of the RETE Network 18
5.2 Working Memory 21
5.3 Parallel Runtime 22
5.3.1 Fact Insertion 22
5.3.2 Propagation 22
5.3.3 Firing 23
5.4 Additional Setting 23
5.5 Execution Sequence 23
6 IMPLEMENTATION DETAIL 25
6.1 Requirements 25
6.1.1 Global 25
6.1.2 Center Control 25
6.1.3 Rete Network 26
6.1.4 Conflict Resolution 27
6.1.5 Parallel Rete Runtime 27
6.1.6 Working Memory 29
6.2 Architecture 30
6.3 Class Diagram 31
6.4 Design Issues and Redesign 32
6.4.1 The number RETE extraction methods may increase. 32
6.4.2 Too many responsibilities in ReteExtractor. 33
6.5 Test Coverage 34
6.6 The Long Lineage RDD Problem 34
7 EXPERIEMENTS 35
8 DISCUSSION AND CONCLUSION 36
9 REFERENCES 37
dc.language.isoen
dc.subjectRETEzh_TW
dc.subject管線化zh_TW
dc.subject分散式zh_TW
dc.subjectproduction systemzh_TW
dc.subjectproduction systemen
dc.subjectdistributeden
dc.subjectRETEen
dc.subjectpipelineen
dc.titleRETE網路之平行化處理zh_TW
dc.titleRETE Networking in Parallelen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee劉立頌(Alan Liu),歐陽明(Ouhyoung Ming),徐國勛(Kuo-Hsun Hsu),許永真(Jane Hsu)
dc.subject.keywordproduction system,分散式,RETE,管線化,zh_TW
dc.subject.keywordproduction system,distributed,RETE,pipeline,en
dc.relation.page38
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved