Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57431Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張森林(San-Lin Chung) | |
| dc.contributor.author | Chien-Ling Lo | en |
| dc.contributor.author | 駱建陵 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:45:49Z | - |
| dc.date.available | 2016-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-26 | |
| dc.identifier.citation | Adrian, T., and J. Rosenberg, 2008, Stock Returns and Volatility: Pricing the Short-run and Long-run Components of Market Risk, Journal of Finance 63, 2997–3030.
Alizadeh, S., M. Brandt, and F. Diebold, 2002, Range-based Estimation of Stochastic Volatility Models, Journal of Finance 57, 1047–1091. Amengual, D. and D. Xiu, 2012, Delving Into Risk Premia: Reconciling Evidence from the S&P 500 and VIX Derivatives. working paper. Bakshi, G., C. Cao, and Z. Chen, 1997, Empirical Performance of Alternative Option Pricing Models, Journal of Finance 52 (5), 2003–2049. Bakshi, G. and D. Madan, 2000, Spanning and Derivative-security Valuation, Journal of Financial Economics 55, 205–238. Bardgett, C., E. Gourier, and M. Leippold, 2013, Inferring Volatility Dynamics and Risk Premia from the S&P 500 and VIX Markets. working paper. Bates, D. S., 1996, Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options, Review of Financial Studies 9, 69–107. Bates, D. S., 2000, Post-’87 Crash Fears in S&P 500 Futures Options, Journal of Econometrics 94, 181–238. Bates, D. S., 2006, Maximum Likelihood Estimation of Latent Affine Processes, Review of Financial Studies 19, 909–965. Broadie, M., M. Chernov, and M. Johannes, 2007, Model Specification and Risk Premia: Evidence from Futures Options, Journal of Finance 62 (3), 1453–1490. Branger, N. and C. Völkert, 2012, The Fine Structure of Variance: Consistent Pricing of VIX Derivatives, working paper. Britten-Jones, M. and A. Neuberger, 2000, Option Prices, Implied Price Processes, and Stochastic Volatility, Journal of Finance 55(2), 839–866. Carr, P., and L. Wu, 2009, Variance Risk Premiums, Review of Financial Studies 22, 1311–1341. Cheng, J., M. Ibraimi, M. Leippold, and J. E. Zhang, 2012, A Remark on Lin and Chang's paper “Consistent Modeling of S&P 500 and VIX Derivatives”, Journal of Economics Dynamics and Control 36(5), 708–715. Christoffersen, P., S. Heston, and K. Jacobs, 2009, The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well, Management Science 55, 1914–1932. Cont, R. and T. Kokholm, 2013, A Consistent Pricing Model for Index Options and Volatility Derivatives, Mathematical Finance 23 (2), 248–274. Duan, J. C. and C. Y. Yeh, 2010, Jump and Volatility Risk Premiums Implied by VIX, Journal of Economics Dynamics and Control 34, 2232–2244. Duffie, D., J. Pan, and K. Singleton, 2000, Transform Analysis and Asset Pricing for Affine Jump-diffusions, Econometrica 68, 1343–1376. Egloff, D., M. Leippold, and L. Wu, 2010, The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments, Journal of Financial and Quantitative Analysis 45, 1279–1310. Eraker, B., 2004, Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices, Journal of Finance 59, 1367–1403. Eraker, B., M. Johannes, and N. Polson, 2003, The Impact of Jumps in Volatility and Returns, Journal of Finance 58, 1269–1300. Grünbichler, A. and F. A. Longstaff, 1996, Valuing Futures and Options on Volatility, Journal of Banking and Finance 20, 985–1001. Heston, S. L., 1993, A Closed-form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options, Review of Financial Studies 6, 327–343. Huang, J. Z. and L. Wu, 2004, Specification Analysis of Option Pricing Models Based on Time-changed Lévy Processes, Journal of Finance 59, 1405–1439. Jiang, G. J. and Y. S. Tian, 2005, The Model-free Implied Volatility and Its Information Content, Review of Financial Studies 18, 1305–1342. Lian, G. H. and S. P. Zhu, 2011, Pricing VIX Options with Stochastic Volatility and Random Jumps, Decisions in Economics and Finance, DOI 10.1007/ s10203-011- 0124-0. Li, G. and C. Zhang, 2010, On the Number of State Variables in Options Pricing, Management Science 56, 2058–2075. Liu, Q., 2010, Optimal Approximations of Nonlinear Payoffs in Static Replication, Journal of Futures Markets 30, 1082–1099. Mencía, J. and E. Sentana, 2013, Valuation of VIX Derivatives, Journal of Financial Economics 108(2), 368–391. Schwert, G. W., 2011, Stock Volatility During the Recent Financial Crisis, European Financial Management 17 (5), 789–805. Sepp, A., 2008, VIX Option Pricing in a Jump-diffusion Model, Risk 21, 84–89. Song, Z. and D. Xiu, 2012, A Tale of Two Option Markets: State-price Densities Implied from S&P 500 and VIX Option Prices, working paper. Todorov, V. and G. Tauchen, 2011, Volatility Jumps, Journal of Business and Economic Statistics 29 (3), 356–371. Wu, L., 2011, Variance Dynamics: Joint Evidence from Options and High-frequency Returns, Journal of Econometrics 160, 280–287. Zhu, S. P. and G. H. Lian, 2012, An Analytical Formula for VIX Futures and Its Applications, Journal of Futures Markets 32, 166–190. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57431 | - |
| dc.description.abstract | 本論文包含四篇衍生性金融商品訂價之論文。論文第一部份「波動模型設定:以波動指數衍生性金融商品訂價為證」利用波動指數衍生性金融商品的市場價格探討多種隨機波動模型的實證表現。本文識別加入跳躍因子與加入多重因子對於建構波動模型的各別價值,並提出有效率且易執行的數值方法解決波動指數衍生性金融商品在訂價上的困難。論文第二部份「由各股選擇權價格萃取違約資訊:一般均衡模型」提出一個新的選擇權訂價模型,從股票的市場價格萃取前瞻性的違約資訊,並推導出一般均衡架構下的違約風險溢酬。論文第三部份「評價保險公司的或有資本:考量交易對手風險與價格內生性」建構一個結構式模型評價保險公司在考量交易對手風險下的或有資本,並解決訂價上所產生的內生性問題。本文亦探討巨災權益賣權如何影響買方的違約機率,發現巨災權益賣權能降低高風險保險公司的違約機率,但對於低風險保險公司則不必然。本論文最後一部份「亞式選擇權的動差配適近似公式」提出一般化的架構訂價所有型式的亞式選擇權,利用動差配適方法推導選擇權價格的可析近似公式,並提出有效的遞迴方法計算動差值。 | zh_TW |
| dc.description.abstract | This dissertation contains four essays on derivatives pricing. Specifically, the first part of dissertation “Volatility Model Specification: Evidence from the Pricing of VIX Derivatives” examines the empirical performance of various stochastic volatility models by investigating the pricing of VIX derivatives. This study identifies the respective values of adding a jump component and specifying an additional factor for volatility modeling and proposes an efficient and easily implemented numerical approximation for the pricing of VIX derivatives. The second part of dissertation “Extracting Default Information from Equity Option Prices: A General Equilibrium Approach” proposes a new option pricing model to extract the forward-looking default information from the market prices of stock options. This study also derives the theoretical default risk premium under a general equilibrium framework. The third part of dissertation “Valuation of Insurers’ Contingent Capital with Counterparty Risk and Price Endogeneity” develops a structural framework to value insurers’ contingent capital with counterparty risk and overcomes the problem of price endogeneity in the valuation model. This study also examines how catastrophe equity put options affect the buyer’s probability of default and concludes that buying a catastrophe equity put option lowers the probability of default for high-risk insurers, but not necessarily so for low-risk insurers. The last part of dissertation “On Moment-Matching Approximations for Asian Options” provides a generalized framework under which all types of Asian options can be priced. This study utilizes the moment-matching approach, deriving analytic approximations for option prices and providing a tractable iterative method to calculate the moments. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:45:49Z (GMT). No. of bitstreams: 1 ntu-103-D98723006-1.pdf: 5745436 bytes, checksum: f31dce6d8a5630d14ff9beb2735fa9a3 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Acknowledgement..............................ii
Abstract in Chinese.........................iii Abstract.....................................iv 1. Volatility Model Specification: Evidence from the Pricing of VIX Derivatives........1 1.1 Introduction........1 1.2 The Model........6 1.3 Valuation of VIX Derivatives........8 1.3.1 Closed-Form Approximation........8 1.3.2 Numerical Analysis........12 1.4 Data Description and Empirical Methodology........14 1.4.1 Data Description........14 1.4.2 Empirical Methodology........16 1.5 Empirical Results........18 1.5.1 Main Results for VIX Options........18 1.5.2 The Role of an Additional Volatility Factor........23 1.5.3 The Role of Jumps in Volatility........27 1.6 Conclusion........31 Reference........32 2. Extract Default Information from Equity Options Prices: A General Equilibrium Approach........51 2.1 Introduction........51 2.2 The Model Setup........55 2.2.1 Joint Distribution of Consumption and Stock Price........55 2.2.2 Equilibrium Stock Price and Return........57 2.2.3 Equilibrium Option Price........58 2.2.4 Physical and Risk-Neutral Probabilities of Default........59 2.2.5 Jump-to-Default Risk Premium........60 2.3 Data Description and Empirical Methodology........61 2.3.1 Data Description........61 2.3.2 Empirical Methodology........62 2.4 Empirical Results........62 2.5 Conclusion........63 Reference........64 3. Valuation of Insurers' Contingent Capital with Counterparty Risk and Price Endogeneity........79 3.1 Introduction........79 3.2 Assumption........82 3.2.1 Interest Rate........82 3.2.2 Asset Value........83 3.2.3 Liability and Catastrophe........83 3.2.4 Insurer's Share Price........84 3.2.5 Exercise Style........84 3.2.6 Probability of Default........85 3.3 Valuation Model........85 3.3.1 Catastrophic Loss........85 3.3.2 Payoff of Contingent Capital........86 3.3.3 Price of Contingent Capital........87 3.3.4 Price Endogeneity........87 3.4 Numerical Results........88 3.4.1 Parameters........88 3.4.2 CatEPut Price with Price Endogeneity........90 3.4.2 CatEPut Price with Counterparty Risk........90 3.5 Further Discussions........92 3.5.1 CatEPut Transaction and Credit Rating........92 3.5.2 Correlation of Catastrophe Risk........94 3.5.3 Interest Rate Risk........95 3.6 Summary Remarks........96 Reference........97 4. On Moment-Matching Approximations for Asian Options........111 4.1 Introduction........111 4.2 The Model........115 4.3 Analytic Approximations........118 4.3.1 The Moments........119 4.3.2 Normal Approximation........120 4.3.3 Shifted Gamma Approximation........121 4.3.4 Shifted Lognormal Approximation........122 4.3.4 Shifted Reciprocal Gamma Approximation........123 4.4 Numerical Comparisons........124 4.4.1 Higher Order Moments........125 4.4.2 Fixed-Strike Asian Options........126 4.4.3 Floating-Strike Asian Options........127 4.4.4 Truncation Errors........127 4.5 Conclusion........128 Reference........129 Appendix........139 | |
| dc.language.iso | en | |
| dc.subject | 封閉近似解 | zh_TW |
| dc.subject | 亞式選擇權 | zh_TW |
| dc.subject | 衍生性金融商品訂價 | zh_TW |
| dc.subject | 巨災風險 | zh_TW |
| dc.subject | 或有資本 | zh_TW |
| dc.subject | 違約機率 | zh_TW |
| dc.subject | 隨機波動 | zh_TW |
| dc.subject | 波動指數衍生性金融商品 | zh_TW |
| dc.subject | Catastrophe Risk | en |
| dc.subject | Probability of Default | en |
| dc.subject | Stochastic Volatility | en |
| dc.subject | Derivatives Pricing | en |
| dc.subject | VIX Derivatives | en |
| dc.subject | Closed-form Approximation | en |
| dc.subject | Asian Option | en |
| dc.subject | Contingent Capital | en |
| dc.title | 衍生性金融商品訂價之研究 | zh_TW |
| dc.title | The Theoretical and Empirical Studies of Derivatives Pricing | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 俞明德(Min-Teh Yu) | |
| dc.contributor.oralexamcommittee | 王耀輝(Yaw-Huei Wang),林士貴(Shih-Kuei Lin),吳庭斌(Ting-Pin Wu) | |
| dc.subject.keyword | 衍生性金融商品訂價,波動指數衍生性金融商品,隨機波動,違約機率,或有資本,巨災風險,亞式選擇權,封閉近似解, | zh_TW |
| dc.subject.keyword | Derivatives Pricing,VIX Derivatives,Stochastic Volatility,Probability of Default,Contingent Capital,Catastrophe Risk,Asian Option,Closed-form Approximation, | en |
| dc.relation.page | 147 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 財務金融學研究所 | zh_TW |
| Appears in Collections: | 財務金融學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 5.61 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
