Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章
dc.contributor.authorWen-Ping Tsaien
dc.contributor.author蔡文柄zh_TW
dc.date.accessioned2021-06-16T06:45:37Z-
dc.date.available2019-08-13
dc.date.copyright2014-08-13
dc.date.issued2014
dc.date.submitted2014-07-28
dc.identifier.citation1. Arthington, A.H., Bunn, S.E., Poff, N.L., Naiman, R.J., 2006. The challenge of providing environmental flow rules to sustain river ecosystems. Ecological Application. 16 (4), 1311–1318.
2. Bragg, O.M., Black, A.R., Duck, R.W., Rowan, J.S., 2005. Approaching the physical-biological interface in rivers: a review of methods for ecological evaluation of flow regimes. Progress in Physical Geography. 29(4), 506.
3. Bunn, S.E., Arthington, A.H., 2002. Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity. Environmental Management 30(4): 492–507.
4. Chang, F.J., Herricks, E.E., 2005. Integration of Ecohydrology in managing water resources. Water Resources Planning Institute technical report (ISBN 986-00-3534-3), Water Resources Agency of MOEA, Taiwan.
5. Chang, F.J., Chang, Y.T., 2006. Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advanced in Water Resources. 29, 1–10.
6. Chang, F.J., Chang, L.C., Wang, Y.S., 2007. Enforced self-organizing map neural networks for river flood forecasting. Hydrological Processes. 21, 741–749.
7. Chang, F.J., Chang, L.C., Kao, H.S., Wu, G.R., 2010. Assessing the effort of meteorological variables for evaporation estimation by Self-Organizing Map Neural Network. Journal of Hydrology. 384, 118–129.
8. Chang, F.J., Tsai, M.J., Tsai, W.P., Herricks, E.E., 2008. Assessing the ecological hydrology of natural flow conditions in Taiwan. Journal of Hydrology. 354(1-4), 75–89.
9. Chang, F.J., Chen, P.A. Liu, C.W., Liao, V.H.C., Liao, C.M., 2013. Regional Estimation of Groundwater Arsenic Concentrations through Systematical Dynamic-neural Modeling. Journal of Hydrology. 499, 265–274.
10. Chang, F.J., Wu, T.C., Tsai, W.P., Herricks, E.E., 2009. Defining the ecological hydrology of Taiwan Rivers using multivariate statistical methods. Journal of Hydrology. 376, 235–242.
11. Chang, F.J., Tsai, W.P., Chen, H.K., Yam, S.W.R., Herricks, E.E., 2013. A self-organizing radial basis network for estimating riverine fish diversity. Journal of Hydrology. 476, 280–289.
12. Chang, F.J., Tsai, W.P., Wu, T.C., Chen, H.K., Herricks, E.E., 2011. Identifying Natural Flow Regimes Using Fish Communities. Journal of Hydrology. 409, 328–336.
13. Chang, L.C., Chang, F.J., 2009. Multi-objective evolutionary algorithm for operating parallel reservoir system. Journal of Hydrology. 377(1-2), 12-20.
14. Chang, L.C., Chang, F.J., Wang, Y.P., 2009. Auto-Configuring RBF Networks for Chaotic Time Series and Flood Forecasting. Hydrological Processes. 23, 2450–2459.
15. Chang, L.C., Chang, F.J., Wang, K.W., Dai, S.Y., 2010. Constrained genetic algorithms for optimizing multi-use reservoir operation. Journal of Hydrology. 390, 66–74.
16. Chang, L.C., Chen, P.A., Chang, F.J., 2012. Reinforced Two-Step-Ahead Weight Adjustment Technique for Online Training of Recurrent Neural Networks. IEEE Transactions on Neural Networks and Learning Systems. 23(8), 1269–1278.
17. Chang, Y.T., Chang, L.C., Chang, F.J., 2005. Intelligent control for modeling of real-time reservoir operation, part II: artificial neural network with operating rule curves. Hydrological Processes. 19(7), 1431–1444.
18. Chen, Y.H., Chang, F.J., 2009. Evolutionary Artificial Neural Networks for Hydrological Systems Forecasting. Journal of Hydrology. 367, 125–137.
19. Chen, P.A., Chang, L.C., Chang, F.J., 2013. Reinforced Recurrent Neural Networks for Multi-Step-Ahead Flood Forecasts. Journal of Hydrology. 497, 71–79.
20. Chiang, Y.M., Hsu, K.L., Chang, F.J., Hong, Y., Sorooshian, S., 2007. Merging multiple precipitation sources for flash flood forecasting. Journal of Hydrology. 340(3-4), 183–196.
21. Chiu, Y.C., Chang, L.C., Chang, F.J., 2007. Using a hybrid genetic algorithm–simulated annealing algorithm for fuzzy programming of reservoir operation. Hydrological Processes. 21, 3162–3172.
22. Clausen, B., Biggs, B.J.F., 2000. Flow variables for ecological studies in temperate streams: groupings based on covariance. Journal of Hydrology. 237 (3-4), 184–197.
23. Cushman, R.M., 1985. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North American Journal of Fisheries Management. 5, 330–339.
24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation. IEEE Transactionson. 6(2), 182-197.
25. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T., 2000. A fast elitist non-dominated sorting genetic algorithm for multi-objective: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference. 846–858.
26. Flather, C.H., Sauer, J.R., 1996. Using landscape ecology to test hypotheses about large-scale abundance patterns in migratory birds. Ecology. 77(1): 28–35.
27. Gholizadeh, S., Salajegheh, E., 2010. Optimal Design of Structures for Earthquake Loading by Self Organizing Radial Basis Function Neural Networks. Advances in Structural Engineering. 13(2), 339–356.
28. Gordon, N.D., McMahon, T.A., Finlayson, B.L., Gippel, C.J., Nathan, R.J., 2004. Stream Hydrology: An Introduction for Ecologists. John Wiley & Sons.
29. Harvey, B.C., 1987. Susceptibility of young-of-the-year fishes to downstream displacement by flooding. Transactions of the American Fisheries Society. 116 (6), 851–855.
30. Herricks, E.E., Cairns J.J., 1983. Biological Monitoring, Part III: Receiving System Methodology Based on Community Structure. Water Research. 16(2), 144–153.
31. Herricks, E.E., Suen, J.P., 2006. Integrative analysis of water quality and physical habitat in the ecological design of water resources projects. Journal of Environmental Science and Health. Part A (41), 1303–1314.
32. Herricks, E.E., 1996. Water quality issues in river channel restoration. River Channel Restoration. Brookes, A.W. and D. J. Shields (eds.). John Wiley and Sons. 179–200.
33. Hsu, S.K., 1995. Shortage indices for water-resources planning in Taiwan. Journal of Water Resources Planning and Management. 121, 119–131.
34. Hughes, D.A., Hannart, P., 2003. A desktop model used to provide an initial estimate of the ecological instream flow requirements of rivers in South Africa. Journal of Hydrology. 270, 167–181.
35. Hughes, J.M.R., James, B., 1989. A hydrological regionalization of streams in Victoria, Australia, with implications for stream ecology. Australian Journal of Marine Freshwater Research. 40 (3), 303–326.
36. Jolliffe, I.T., 2002. Principal Component Analysis, second ed. Springer, NY.
37. Karr, J.R., 1981. Assessment of biotic integrity using fish communities. Fisheries. (6), 21–27.
38. Koel, T.M., Sparks, R.E., 2002. Historical patterns of river stage and fish communities as criteria for operations of dams on the Illinois River. River Research and Applications. 18(1), 3–19.
39. Kohonen, T., 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics. 43, 59–69.
40. Legendre, P., 1993. Spatial Autocorrelation: Trouble or New Paradigm?. Ecology. 74(6), 1659–1673.
41. Lin, S.H., Tsai, C.W., Lee, M.L., 2007. Establishment and Application of Index of Biotic Integrity-A Case Study in Tou-Bian-Keng Creek Watershed. Journal of Soil and Water Conservation. 39(1), 1–13.
42. Lindman, H.R., 1974. Analysis of variance in complex experimental designs. W.H. Freeman & Co, San Francisco.
43. Magoulick, D.D., Kobza, R.M., 2003. The role of refugia for fishes during drought: a review and synthesis. Freshwater biology. 48 (7), 1186–1198.
44. Malekmohammadi, N., Hosseinzadeh Lotfi, F., Jaafar, A.B., 2011. Target setting in data envelopment analysis using MOLP. Applied Mathematical Modelling. 35(1), 328-338.
45. Manel, S., Schwartz, M.K., Luikart, G., Taberlat, P., 2003. Landscape genetics: combining landscape ecology and population genetics. Trends in Ecology & Evolution. 18(4), 189–197.
46. Monk, W.A., Wood, P.J., Hannah, D.M., Wilson, D.A., 2007. Selection of river flow indices for the assessment of hydroecological change. River Research and Applications. 23(1), 113–122.
47. Moradkhani, H., Hsu, K., Gupta, H.V., Sorooshian, S., 2004. Improved Streamflow Forecasting Using Self-Organizing Radial Basis Function Artificial Neural Network. Journal of Hydrology. 295(1-4), 246–262.
48. Naesje, T., Jonsson, B., Skurdal, J., 1995. Spring flood: a primary cue for hatching of river spawning Coregoninae. Canadian Journal of Fisheries and Aquatic Sciences. 52(10), 2190–2196.
49. Nesler, T.P., Muth, R.T., Wasowicz, A.F., 1988. Evidence for baseline flow spikes as spawning cues for Colorado Squawfish in the Yamoa River, Colorado. American Fisheries Society Symposium. 5, 68–79.
50. Olden, J.D., Poff, N.L., 2003. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes, River Research and Applications. 19(2), 101–121.
51. Oliveira, R., Loucks, D.P., 1997. Operating rules for multireservoir systems. Water Resources Research. 33(4), 839–852.
52. Pinthong, P., Gupta, A.D., Babel, M.S., Weesakul, S., 2009. Improved Reservoir Operation Using Hybrid Genetic Algorithm and Neurofuzzy Computing. Water Resources Management. 23(4), 697–720.
53. Poff, N.L., 1996. A hydrogeography of unregulated streams in the United States and an examination of scale-dependence in some hydrological descriptors. Freshwater Biology. 36(1), 71–91.
54. Poff, N.L., Allan, J.D., Bain, M.B., Karr, J.R., Prestegaard, K.L., Richter, B.D., Sparks, R.E., Stromberg, J.C., 1997. The natural flow regime; a paradigm for river conservation and restoration. BioScience. 47, 769–784.
55. Poff, N.L., Tokar, S., Johnson, P., 1996. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limnology and Oceanography. 41 (5), 857–863.
56. Rand, W.M., 1971. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association (American Statistical Association). 6(336), 846–850.
57. Reddy, M.J., Kumar, D.N., 2006. Optimal Reservoir Operation Using Multi-Objective Evolutionary Algorithm. Water Resources Management. 20, 861–878.
58. Richter, B.D., Baumgartner, J.V., Powell, J., Braun, D.P., 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology. 10(4), 1163–1174.
59. Richter, B.D., Baumgartner, J.V., Wigington, R., Braun, D.P., 1997. How much water does a river need? Freshwater Biology. 37(1), 231–249.
60. Richter, B.D., Mathews, R., Harrison, D.L., Wigington, R., 2003. Ecologically sustainable water management: managing river flows for ecological integrity. Ecological Applications. 13 (1), 206–224.
61. Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal. 27,379–423, 623–656.
62. Sharma, S., 1996. Applied Multivariate Techniques. John Wiley & Sons Inc., New York, NY, USA.
63. Sudheer, K.P., Chaubey, I., Garg, V., 2006. Lake water quality assessment from Landsat thematic mapper data using neural network: An approach to optimal band combination selection. Journal of the American Water Resources Association. 42(6), 1683–1695.
64. Suen, J.P., 2005. Ecologically based methods for multi-objective water resources management in Taiwan. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, USA.
65. Suen, J.P., Herricks, E.E., 2006. Investigating the causes of fish community change in the Tahan River (Taiwan) using an autecology matrix. Hydrobiologia, 568(1), 317–330.
66. Suen, J.P., Herricks, E.E., 2009. Developing fish community based ecohydrological indicators for water resources management in Taiwan. Hydrobiologia. 625,223–234.
67. Suen, J.P., Eheart, J.W., 2006. Reservoir management to balance ecosystem and human needs: incorporating the paradigm of the ecological flow regime. Water Resources Research. 42(3), W03417. doi:10.1029/2005WR004314.
68. Suen, J.P., Tsao, H.S., Herricks, E.E., 2005. The Development of Fish Autecology Matrix and Its Application for Ecological Engineering. J. Taiwan Water Conservancy. 53(2), 86–93.
69. Tew, K.S., Han, C.C., Chou, W.R., Fang, L.S., 2002. Habitat and fish fauna structure in a subtropical mountain stream in Taiwan before and after a catastrophic typhoon. Environmental Biology of Fishes. 65(4), 457–462.
70. Toth, E., 2009. Classification of hydro-meteorological conditions and multiple artificial neural networks for streamflow forecasting. Hydrol. Earth Syst. Sci. 13(9), 1555–1566.
71. Ward, J.V., Stanford, J.A., 1983. The intermediate-disturbance hypothesis: an explanation for biotic diversity patterns in lotic ecosystems. T. D. Fontaine III and S. M. Bartell (Eds.). Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, MI. 347–356.
72. Ward, J.V., Tockner, K., Schiemer, F., 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers-Research & Management. 15(1-3), 125–139.
73. Welcomme, R.L., 1985. River Fisheries. FAO Fisheries Technical Paper: 262. Food and Agriculture Organization of the United Nations, Rome.
74. Yang, Y.C.E., Cai, X.M., Herricks, E.E., 2008. Identification of hydrologic indicators related to fish diversity and abundance: A data mining approach for fish community analysis. Water Resources Research. 44(4), W04412, doi: 10.1029/ 2006WR005764.
75. Yeung, K.Y., Ruzzo, W.L., 2001. Principal component analysis for clustering gene expression data. Bioinformatics. 17(9), 763–774.
76. Yilmaz, I, Erik, N.Y., Kaynar, O., 2010. Different types of learning algorithms of artificial neural network (ANN) models for prediction of gross calorific value (GCV) of coals. Scientific Research and Essays. 5(16), 2242–2249.
77. Yuan, J., Shu, J., 2008. Application of neural network model to prediction of water quality of the Yellow River. Journal of Ecology and Rural Environment. 24(2), 49–51, 60.
78. Zimmermann, H.J., 1976. Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2, 209– 215.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57426-
dc.description.abstract近年來由於全球氣候變遷的因應及生態環境復育意識的提昇,人類在追求物質的滿足之餘,慢慢開始重視與生態、環境的共存關係;河川流量管理即為一兼顧人類使用需求及河川生態系統需求之理念,將生態觀念融入河川流量經營管理之中,以達到人類與河川生態系統共存的理想;台灣生態水文指標系統考量台灣特有之水文地文條件,以自然河川的生態河川流態特性做為水資源管理的生態參考指標,為同時兼顧人類用水及河川生態之多目標水資源管理的重要參考。
本論文為一系列跨學科領域(生態水文系統)分析探討之研究,從時間及空間面向深入探討錯綜複雜的生態學與水文學間之關係,提出創新的分析技術,如結合統計方法、變異數分析、人工智慧及多目標最佳化搜尋等,皆廣泛的被應用在此研究中,本研究目的主要有:(1)台灣生態水文系統特性之探討與其於流量管理之應用;(2)建立台灣地區魚類生態水文地形之空間特性分區;(3) 探討台灣生態水文特性對魚類群聚於時間之影響;(4)應用類神經網路建立台灣生態水文指標對魚類生物多樣性之探討;(5)建立考量人類需求及提升生物多樣性之多目標最佳化水資源管理。
本研究首先透過迴歸分析整合生態水文因子與地形因子間之關係,以了解台灣生態水文與地形之相關性,建立水文-地形-生態間之交互關係,並應用新穎的聚類分析方法,探討台灣生態水文特性分區;接著利用變異數分析,探討TEIS所反映之台灣地理、地形特性及各指標在空間分佈上之差異,如不同集水區間或同集水區上游和下游監測站間,TEIS指標是否有差異,以提供水資源管理者在流量管理之重要參考依據。
在溪流生態學的研究中,空間與時間尺度及連續性等觀念經常被提出來探討及進行研究,因此在本研究中除了空間上的探討外,亦利用移動平均法深入瞭解水文資料對魚類生態資料在時間上的影響關係,並採用點二相關係數分析,將歷史流量資料與魚類資料結合產生一個水文-生態矩陣,討論TEIS與魚類生態資料之關係,此部分研究結果顯示河川流態資料有顯著影響之時間期距與台灣魚類平均壽命之長度相吻合。
然基於對大自然有限的了解,往往無法得知河川生態系統的實際需求,也無法明確地以數值或方程式的方式表示,因此本研究最後應用人工智慧技術,架構結合自組特徵映射網路與輻狀基底函數類神經網之複合式類神經網路:自組特徵輻狀基底類神經網路,並透過此模式利用台灣生態水文指標推估河川生態系統中之魚類生物多樣性,結果顯示此模式不但能有系統的分類歸納河川流量資料,並且能快速、有效率又精確的推估魚類之生物多樣性;本研究最後基於考量河川流態於提升生物多樣性的概念,發展以考量生物多樣性為原則之多目標水資源管理策略,具體建立提升河川生物多樣性及考量人類用水之永續水資源最佳化管理模式。
zh_TW
dc.description.abstractIn response to global climate change and the raise of eco-environmental restoration concept, the equity between ecosystems, environment and human beings gains increasing attention for the past years. The concept of streamflow regime management is to incorporate ecological sustainability into flow regime management by taking the needs of both human and river ecosystems into consideration. Hydrologic indicator systems provide a summary of hydrologic conditions that are considered important to organism maintenance and ecosystem sustainability. The characteristics of ecological flow regimes can be used as reference indicators for multi-objective water resources management, which reflect the water demands of both human consumption and ecological systems. Physiographic and climatic conditions make Taiwan an ideal location for the examination of eco-hydrological issues in a sub-tropical climate.
In this dissertation, a series of research is conducted and devoted to the interdisciplines of ecology and hydrology in Taiwan. The major purposes of this dissertation are to explore the complex relationship between ecology and hydrology in spatial as well as temporal aspects and to apply the research results to integrated water resources management. Therefore, innovated analytical techniques, such as a combination of statistical methods, multivariate analyses, artificial neural networks (ANNs) and multi-objective optimization methods, are used comprehensively in eco-hydro studies. The Taiwan Eco-hydrologic Indicator System (TEIS) was developed particularly to evaluate ecological flows in Taiwan and is adopted throughout this dissertation. The objectives of relational research consist of: (i) investigate the eco-hydrological characteristics of Taiwan rivers and assess the applicability of those characteristics to flow management; (ii) classify the spatial characteristics of the eco-hydro-geomorphic systems with respect to fisheries; (iii) assess the temporal eco-hydrological characteristics of fish communities; (iv) apply ANNs to estimate the eco-hydrological characteristics and fish bio-diversity in rivers; and (v) implement the multi-objective optimization of water resources management by taking the equity between human needs and riverine biodiversity into consideration.
The first study of this dissertation identifies the eco-hydro-geomorphic relationship between TEIS statistics and geomorphic factors based on the regression analysis, and then a novel clustering analysis is used to divide Taiwan into several eco-hydrological regions based on TEIS statistics. The analysis of variance (ANOVA) is adopted in the second study of this dissertation to explore the spatial significance of eco-hydro systems based on TEIS statistics, which would reflect the geographical and geomorphological features of Taiwan. This analysis can provide water resources managers with an important reference for flow management. The assessment of riverine ecology is presented in the third study of this dissertation, which investigates issues such as the concepts of spatial-temporal scales. The moving average method is used to build the temporal relationship between hydrological data and fishery data, and then a FISH-TEIS matrix can be obtained from the point-biserial correlation analysis that combines historical flow data and fishery data. This analysis indicates that a flow regime defined by a 4-year record (the existing year and three antecedent years) is adequate to characterize the natural flow regime for Taiwan fisheries, which is consistent with the ecology and life spans of indigenous fish species.
Due to the limited understanding of nature, it is difficult to get acquainted with the actual demands of river ecosystems or represent the systems by numerical methods and/or formulas. Therefore, the fourth study in this dissertation uses artificial intelligence techniques to build up a hybrid ANN that combines the self-organizing feature map (SOM) and the radial basis function neural networks (RBFNNs) into the self-organizing radial basis network (SORBN) for estimating fish bio-diversity based on TEIS statistics. The results show that this model not only can categorize stream flow data but also can estimate fish bio-diversity quickly, efficiently and precisely. Finally, the concept of improving riverine biodiversity is implemented in the fifth study of this dissertation to develop sustainable water resource management by considering both human and ecosystem needs.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:45:37Z (GMT). No. of bitstreams: 1
ntu-103-D98622005-1.pdf: 5564330 bytes, checksum: 17446004b360de7eeb65bc0d3310157f (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsAbstract i
摘 要 v
Contents vii
List of figures x
List of tables xiii
Chapter 1 Introduction 1
1.1 Motivation and objectives 1
1.2 Literature review and physical setting of Taiwan 4
1.3 Structure of the dissertation 10
Chapter 2 Assess eco-hydro flow regime in Taiwan 14
2.1 Description of data 15
2.2 Methods 22
2.3 Characterize the flow regime in Taiwan rivers 26
2.4 Results of analysis 32
2.5 Summary 41
Chapter 3 Identify the spatial significance of eco-hydrology 44
3.1 Methods 46
3.2 Description of data and study case 48
3.3 Results and discussion 51
3.4 Summary 61
Chapter 4 Identify the temporal relationship of eco-hydrology 64
4.1 Description of data 68
4.2 Methods 72
4.3 Results and discussion 79
4.4 Summary 84
Chapter 5 Modeling riverine fish diversity 86
5.1 Description of data 86
5.2 Methods 93
5.3 Results and discussion 102
5.4 Summary 108
Chapter 6 Balance ecosystem and human needs for water resources management 111
6.1 Purpose 113
6.2 Study area and data description 114
6.3 Methods 117
6.4 Results 127
6.5 Summary 135
Chapter 7 Concluding Remarks and suggestions 137
7.1 Concluding remarks 137
7.2 Suggestions 141
References 143
Appendix A: Curriculum Vitae 155
Appendix B 161
dc.language.isoen
dc.subject台灣生態水文指標系統zh_TW
dc.subject河川流態zh_TW
dc.subject人工智慧zh_TW
dc.subject多目標最佳化zh_TW
dc.subject生態水文系統zh_TW
dc.subject類神經網路zh_TW
dc.subject自組特徵輻狀基底網路zh_TW
dc.subject生物多樣性zh_TW
dc.subject水資源管理zh_TW
dc.subjectself-organizing radial basis network (SORBN)en
dc.subjectTaiwan Eco-hydrologic Indicator System (TEIS)en
dc.subjectflow regimeen
dc.subjectartificial intelligence (AI)en
dc.subjectmulti-objective optimizationen
dc.subjecteco-hydrosystemsen
dc.subjectwater resources managementen
dc.subjectbio-diversityen
dc.subjectartificial neural network (ANN)en
dc.title人工智慧於河川生態水文系統之管理zh_TW
dc.titleFluvial Eco-hydrosystems Management by Artificial Intelligence Techniquesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree博士
dc.contributor.oralexamcommittee黃文政,林裕彬,張麗秋,孫建平
dc.subject.keyword台灣生態水文指標系統,河川流態,人工智慧,多目標最佳化,生態水文系統,類神經網路,自組特徵輻狀基底網路,生物多樣性,水資源管理,zh_TW
dc.subject.keywordTaiwan Eco-hydrologic Indicator System (TEIS),flow regime,artificial intelligence (AI),multi-objective optimization,eco-hydrosystems,artificial neural network (ANN),self-organizing radial basis network (SORBN),bio-diversity,water resources management,en
dc.relation.page164
dc.rights.note有償授權
dc.date.accepted2014-07-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
5.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved