請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57410完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李篤中(Duu-Jong Lee) | |
| dc.contributor.author | Yu-Chen Lai | en |
| dc.contributor.author | 賴昱辰 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:44:59Z | - |
| dc.date.available | 2016-08-13 | |
| dc.date.copyright | 2014-08-13 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2014-07-28 | |
| dc.identifier.citation | 1. Chen, G.R., Cesium Removal from Tap Water Using Prussian blue. 2013.
2. Brown J., Hammond D., Wilkins B. T., Handbook for assessing the impact of a radiological incident on levels of radioactivity in drinking water and risks to operatives at water treatment works. Health Protection Agency, 2008. 3. Gafvert T., Ellmark C., Holm E., Removal of radionuclides at a waterworks. Journal of Environmental Radioactivity, 2002. 63(2): pp. 105-115. 4. Goossens R., Delville A., Genot J., Halleux R., Masschelein W.J., Removal of the Typical Isotopes of the Chernobyl Fallout by Conventional Water-Treatment. Water Research, 1989. 23(6): pp. 693-697. 5. Lindsay, W.L., Chemical equilibria in soils. John Wiley and Sons Ltd, 1979. 6. Favaro M., Bianchin S., Vigato P.A., Vervat M., The palette of the Macchia Italian artist Giovanni Fattori in the second half of the xixth century. Journal of Cultural Heritage, 2010. 11(3): pp. 265-278. 7. I.A.E.A., The use of Prussian Blue to reduce radiocaesium contamination of milk and meat produced on territories affected by the Chernobyl accident. 1997. 8. Buser H. J., Schwarzenbach D., Petter W., Ludi A., The crystal structure of Prussian blue: Fe4 [Fe (CN) 6] 3. xH2O. Inorganic Chemistry, 1977. 16(11): pp. 2704-2710. 9. Keggin J.F., Miles F.D.. Structures and formulae of the Prussian blues and related compounds. Nature, 1936. 137(7): pp. 577-578. 10. Karyakin, A. A., Prussian blue and its analogues: electrochemistry and analytical applications, Electroanalysis, 2001. 13: pp. 813–819. 11. Crumbliss A.L., Lugg P.S., Morosoff N., Alkali metal cation effects in a Prussian blue surface-modified electrode, Inorganic Chemistry, 1984. 23: pp. 4701–4708. 12. Wojdeł, J.C., de P.R. Moreira, I., Bromley, S.T., Illas, F., Prediction of half-metallic conductivity in Prussian Blue derivatives. Journal of Materials Chemistry, 2009. 19(14): pp. 2032-2036. 13. Faustino, P.J., Yang, Y., Progar, J.J., Brownell, C.R., Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue. Journal of Pharmaceutical and Biomedical Analysis, 2008. 47(1): pp. 114-125. 14. Ishizaki, M., Akiba, S., Ohtani, A., Hoshi, Y., Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules. Dalton Transactions 2013. 42(45): pp. 16049-16055. 15. Vipin, A.K., Hu, B., Fugetsu, B., Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water. Journal of Hazardous Materials, 2013. 258-259: pp. 93-101. 16. Sikorski, P., Mo, F., Skjak-Brak, G., Stokke, B.T., Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules, 2007. 8(7): pp. 2098-2103. 17. Morch, Y.A., Donati, I., Strand, B. L., Skjak-Brak, G., Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules, 2006. 7(5): pp. 1471-1480. 18. Pawar, S.N., Edgar, K.J., Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 2012. 33(11): pp. 3279-3305. 19. Skjak-Brak, G., Grasdalen, H., Smidsrod, O., Inhomogeneous polysaccharide ionic gels. Carbohydrate polymers, 1989. 10(1): pp. 31-54. 20. Boateng, J.S., Matthews, K.H., Stevens, H.N., Eccleston, G.M., Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 2008. 97(8): pp. 2892-2923. 21. Ramsey, D.M., Wozniak, D.J., Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Molecular Microbiology, 2005. 56(2): pp. 309-322. 22. Khoo, K.M., Ting, Y.P., Biosorption of gold by immobilized fungal biomass. Biochemical Engineering Journal, 2001. 8(1): pp. 51-59. 23. Czichocki, G., Dautzenberg, H., Capan, E., Vorlop, K.D., New and effective entrapment of polyelectrolyte-enzyme-complexes in LentiKats. Biotechnology Letters, 2001. 23(16): pp. 1303-1307. 24. Wilson, L., Illanes, A., Pessela, B.C., Abian, O., Fernandez‐Lafuente, R., Guisan, J.M., Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 2004. 86(5): pp. 558-562. 25. Rawat, M., Rawat, A. P., Giri, K., Rai, J. P. N, Cr(VI) sorption by free and immobilised chromate-reducing bacterial cells in PVA-alginate matrix: equilibrium isotherms and kinetic studies. Environmental science and pollution research international, 2013. 20(8): pp. 5198-5211. 26. Idris, A., Misran, E., Hassan, N., Jalil, A. A., Seng, C. E., Modified PVA-alginate encapsulated photocatalyst ferro photo gels for Cr(VI) reduction. Journal of Hazardous Materials, 2012. 227: pp. 309-316. 27. Zhang, Y., Kogelnig, D., Morgenbesser, C., Stojanovic, A., Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions. Journal of Hazardous Materials, 2011. 196: pp. 201-209. 28. Nunes, M.A., Vila-Real, H., Fernandes, P.C., Ribeiro, M.H., Immobilization of naringinase in PVA-alginate matrix using an innovative technique. Applied Biochemistry and Biotechnology, 2010. 160(7): pp. 2129-2147. 29. Long, Z.E., Huang, Y., Cai, Z., Cong, W., Ouyang, F., Immobilization of Acidithiobacillus ferrooxidans by a PVA–boric acid method for ferrous sulphate oxidation. Process Biochemistry, 2004. 39(12): pp. 2129-2133. 30. Grishin, S.I., Tuovinen, O.H., Scanning electron microscopic examination of Thiobacillus ferrooxidans on different support matrix materials in packed bed and fluidized bed bioreactors. Applied Microbiology and Biotechnology, 1989. 31(5-6): pp. 505-511. 31. Millero, F. J., The pH of estuarine waters. Limnol. Ocean ogranic, 1986. 31(4): p. 839-847. 32. Ahmad, A. A., Hameed, B.H., Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste. Journal of Hazard Materials, 2010. 175(1-3): pp. 298-303. 33. Shafeeyan, M.S., Wan Daud, W.M.A., Shamiri, A., A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chemical Engineering Research and Design, 2013. 92(5): pp: 961–988 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57410 | - |
| dc.description.abstract | 我們使用非輻射之銫-133來模擬輻射銫在水中的吸附行為,合成之聚乙烯醇與海藻酸共聚物顆粒為一良好之普魯士藍載體,此種顆粒在淡水、自來水、海水中被使用為銫離子之吸附劑,在吸附銫的同時,此種顆粒在吸附過程中保有良好的穩定性。鐵離子在吸附程序完成後的水體中被檢測出,代表普魯士藍在吸附過程中有微量的分解,而鐵血鹽在水體中是我們所不樂見的,此問題可以在聚乙烯醇與海藻酸共聚物顆粒中添加可以吸附目標離子之離子交換樹脂,達到同時吸附銫離子且同時吸附分解的目標離子,以防止它溶入水中。在杯瓶實驗中,銫離子被聚乙烯醇與海藻酸共聚物顆粒吸附為一顆粒內擴散質傳控制程序,換言之,顆粒內擴散為速率決定步驟,此結果被模型模擬所驗證,此外,隨著聚合物的聚合程度提高,顆粒內擴散係數將會隨之減低。本研究所使用的顆粒配方在快濾池模擬實驗中並無法將銫離子百分之百去除,但線性驅動力模型提供了可調整之參數,我們可以藉由調整這些參數去面對不同的需求。此研究提供了一種可在淡水及海水中去除銫且同時防止離子溶至水中之多功能顆粒,可做為核能事故發生時之緊急處理方案。 | zh_TW |
| dc.description.abstract | In this study non-radioactive Cs-133 was used to simulate the adsorption process of radioactive cesium in water.. ALG-PVA Prussian blue (PB) granule was synthesized and was used as an adsorbent to remove cesium in deionized water, tap water and sea water. The ALG-PVA granule can adsorb cesium efficiently from fresh and salty water.Some iron ions had eluted into the water, which means there some PB had dissolved, releasing ferrocyanide ion into the water. The ions can be removed by adding an ion exchange resin for selected target ion in the ALG-PVA PB granule. The adsorption of cesium in the batch test is an intraparticle diffusion control process confirmed by the model simulation result. The degree of crosslinking of polymer decreases the effective diffusivity of the granule. The current recipe of granule cannot remove all the cesium in large scale rapid filtration test which shows that one can get 100% removal of cesium by changing the radius of granule from 3mm to 2mm. This study provides a multi-function granule which can remove cesium from tap water, sea water and can prevent possible leakage of ion from PB as an emergent solution for nuclear accident. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:44:59Z (GMT). No. of bitstreams: 1 ntu-102-R01524087-1.pdf: 1000220 bytes, checksum: b759abfc9430575c1bee56ef1525eb02 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | Acknowledgements I
Abstract II 摘要 III Table of contents IV List of figures VII List of tables XI Chapter 1. Introduction 1 Chapter 2. Literature review 3 2-1 Nuclear safety and nuclear disaster emergency treatment 3 2-2 Methods to treat radioactive water 4 2-3 Radioactive Cesium-137 5 2-4 Prussian blue (PB) 7 2-4-1 introduction of Prussian blue 8 2-4-2 ion exchange effect 10 2-5 Alginate beads 11 2-6 PVA-alginate beads 15 Chapter 3. Materials & Methods 20 3-1 Experimental materials 20 3-1-1 Preparation of alginate beads 20 3-1-2 Preparation of PVA-alginate and PVA-alginate-resin beads 21 3-1-3 Mass production of granules 22 3-2 Experimental Methods 23 3-2-1 Swelling ratio 23 3-2-2 Batch adsorption experiment 24 3-2-2-1 Adsorption kinetics of granule in DI water 25 3-2-2-2 Adsorption kinetics of granule in sea water 26 3-2-3 Fix-bed adsorption 27 Chapter 4. Results & Discussions 30 4-1 Swelling ratio 30 4-2 Batch adsorption experiment 36 4-3 Fixed-bed adsorption experiment 49 4-4 Adsorption process modeling 55 4-4-1 Film diffusion model 56 4-4-2 Intraparticle diffusion model 60 4-4-3 Rapid filtration model 64 Conclusions 69 References 71 | |
| dc.language.iso | en | |
| dc.subject | 銫 | zh_TW |
| dc.subject | 聚乙烯醇 | zh_TW |
| dc.subject | 海藻酸 | zh_TW |
| dc.subject | 普魯士藍 | zh_TW |
| dc.subject | cesium | en |
| dc.subject | prussian blue | en |
| dc.subject | PVA | en |
| dc.subject | alginate | en |
| dc.title | 以聚乙烯醇與海藻酸共聚物乘載普魯士藍之顆粒去除水中之銫 | zh_TW |
| dc.title | Removal of cesium from water using Prussian blue immobilized in PVA-alginate bead | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉志成(Jhy-Chern Liu),李懷特(Christopher George Whiteley),張嘉修(Jo-Shu Chang),黃志彬(Chih-Pin Huang) | |
| dc.subject.keyword | 銫,普魯士藍,聚乙烯醇,海藻酸, | zh_TW |
| dc.subject.keyword | cesium,prussian blue,PVA,alginate, | en |
| dc.relation.page | 76 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 976.78 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
