請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57399完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊永裕(Yung-Yu Chuang) | |
| dc.contributor.author | Han-Yi Tsai | en |
| dc.contributor.author | 蔡函頤 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:44:31Z | - |
| dc.date.available | 2019-08-01 | |
| dc.date.copyright | 2014-08-01 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-28 | |
| dc.identifier.citation | [1] C. Liu, J. Yuen, and A. Torralba. SIFT Flow: Dense correspondence across scenes and its applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5):978–994, 2011.
[2] J. Kim, C. Liu ans F. Sha, , and K. Grauman. Deformable spatial pyramid matching for fast dense correspondences. In Proc. Conf. on Computer Vision and Pattern Recognition, 2013. [3] B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981. [4] D. G. Lowe. Object recognition from local scale-invariant features. In Proc. Int’l Conf. on Computer Vision, 1999. [5] A. C. Berg and J. Malik. Geometric blur for template matching. In Proc. Conf. on Computer Vision and Pattern Recognition, 2001. [6] Z. Wang, B. Fan, and F. Wu. Local intensity order pattern for feature description. In Proc. Int’l Conf. on Computer Vision, 2011. [7] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for dense matching. In Proc. Conf. on Computer Vision and Pattern Recognition, 2008. [8] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815–830, 2010. [9] J. Lu, H. Yang, D. Min, and M. N. Do. PatchMatch Filter: Efficient edge-aware filtering meets randomized search for fast correspondence field estimation. In Proc. Conf. on Computer Vision and Pattern Recognition, 2013. [10] B. Lucas and T. Kanade. An iterative image registration technique with an application to stereo vision. In Proc. Int’l Joint Conf. on Artificial Intelligence, 1981. [11] A. Bruhn, J. Weickert, and C. Schn‥orr. Lucas/Kanade meets Horn/Schunck: Combining local and global optical flow methods. Int’l Journal of Computer Vision, 61(3):211–231, 2005. [12] M. J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104, 1996. [13] Etienne M’emin and Patrick P’erez. Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Transactions on Image Processing, 7(5):703–719, 1998. [14] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In Proc. Eur. Conf. on Computer Vision, 2004. [15] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J. Weickert. Highly accurate optic flow computation with theoretically justified warping. Int’l Journal of Computer Vision, 67(2):141–158, 2006. [16] Y. Mileva, A. Bruhn, and J. Weickert. Illumination-robust variational optical flow with photometric invariants. In Pattern Recognition, pages 152–162. 2007. [17] H. Zimmer, A. Bruhn, J. Weickert, L. Valgaerts, A. Salgado, B. Rosenhahn, and H.-P. Seidel. Complementary optic flow. In Energy Minimization Methods in Computer Vision and Pattern Recognition, pages 207–220, 2009. [18] K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1615–1630, 2004. [19] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. PatchMatch: A randomized correspondence algorithm for structural image editing. ACM Transactions on Graphics (Proc. SIGGRAPH), 28(3):24, 2009. [20] C. Barnes, E. Shechtman, D. B. Goldman, and A. Finkelstein. The generalized patchmatch correspondence algorithm. In Proc. Eur. Conf. on Computer Vision, 2010. [21] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In Proc. Int’l Conf. on Computer Vision, 1998. [22] K. He, J. Sun, and X. Tang. Guided image filtering. In Proc. Eur. Conf. on Computer Vision, 2010. [23] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz. Fast cost-volume filtering for visual correspondence and beyond. In Proc. Conf. on Computer Vision and Pattern Recognition, 2011. [24] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S‥usstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11):2274–2282, 2012. [25] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(11):1222–1239, 2001. [26] V. Kolmogorov and R. Zabin. What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(2):147–159, 2004. [27] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9):1124–1137, 2004. [28] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, and L. V. Gool. A comparison of affine region detectors. Int’l Journal of Computer Vision, 65(1-2):43–72, 2005. [29] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing via label transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12):2368–2382, 2011. [30] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (VOC) challenge. Int’l Journal of Computer Vision, 88(2):303–338, 2010. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57399 | - |
| dc.description.abstract | 在這篇論文中,我們提出一個方法來解決基於影像的場景對位。場景對位的目的在於建立一對影像之間的密集對應,過去已經有許多研究專注於影像對位這個問題,在兩張包含相同場景但是從鄰近的視角或在連續的時間點上所拍攝的影像之間,進行密集的立體對應和光流場的估計。然而,要對兩張包含不同場景或物體的影像做場景對位,仍然是個具有挑戰性的問題,因為在一般影像中存在著多種不同的影像變異,我們並沒有辦法事先知道有哪些變異發生在它們之間,所以在這一個研究中,我們提出利用多重描述符來克服不同影像變異的問題,並且介紹一個準則,可以在 SIFT、geometric blur、DAISY 和 LIOP 之間選出適合的描述符。另外,不同場景間嚴重的影像變異以及影像的高解析度,會造成計算成本變得更高,為了改善在這些情況下的效率,我們採用一個階層式的結構,以由粗糙到精細的方法,先快速地對整張影像估計出大概的對應。我們的方法主要是基於一個現有的技術,即 PatchMatch filter,它是一個通用且快速的架構,目的在於處理一般多重標號的問題,所以我們將自己提出比較不同描述符的準則結合到這個架構中。在最後的實驗中,我們將提出的方法測試在不同且具有挑戰性的資料集合上,結果顯示我們的方法藉由利用不同的描述符所提供的互補資訊,可以適合用在一些普通的影像對上。 | zh_TW |
| dc.description.abstract | In this thesis, we introduce a general method for image-based scene alignment. Scene alignment aims to establish dense correspondence for a pair of images. Much research effort has been made to estimate a dense stereo and optical flow field for two given images that have the same scene but were captured from distinct viewpoints or at different time. However, to align images with different scenes or objects, it is still challenging. There are diverse image variations between general images. It is difficult to know what kind of image variations occurs across the images in advance. We hence propose to utilize multiple descriptors to deal with the problem of different image variations. A criterion is presented to select proper descriptors among SIFT, geometric blur, DAISY, and LIOP. Moreover, serious image variations as well as high image resolutions make the computational cost becomes much higher. To improve efficiency in this circumstances, we adopt a hierarchical structure to estimate the approximate correspondences in coarse-to-fine manner. This work is based on an exiting technique, ie PatchMatch filter, which is a generic and fast computational framework for general multi-labeling problems. We integrate the aforementioned criterion into the framework. Experiments on different challenging datasets show that our approach is suitable for general images by leveraging the complementary information from the different descriptors. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:44:31Z (GMT). No. of bitstreams: 1 ntu-103-R01922066-1.pdf: 23689115 bytes, checksum: 8b0c222c3385aa8fc9eea6dbf74db83c (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv 1 Introduction 1 2 Related Work 6 2.1 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Scene Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3.1 SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.2 Geometric Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.3 DAISY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3.4 LIOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Preliminary 10 3.1 PatchMatch Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Deformable Spatial Pyramid Matching . . . . . . . . . . . . . . . . . . . 11 4 The Proposed Approach 13 4.1 Comparison between Multiple Descriptors . . . . . . . . . . . . . . . . . 14 4.2 Multiple Descriptors Matching . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Multi-descriptor PMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.4 Superpixel-based DSP . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 Experiments 21 5.1 Datasets and Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 21 5.1.1 Caltech-101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.1.2 Dataset of Mikolajczyk et al. . . . . . . . . . . . . . . . . . . . . 22 5.2 Experiment I: Multiple Descriptors . . . . . . . . . . . . . . . . . . . . . 22 5.3 Experiment II: Superpixel-based DSP . . . . . . . . . . . . . . . . . . . 24 5.4 Experiment III: Scene Alignment . . . . . . . . . . . . . . . . . . . . . . 26 6 Conclusion 29 Bibliography 30 | |
| dc.language.iso | en | |
| dc.subject | 圖像塊匹配 | zh_TW |
| dc.subject | 場景對位 | zh_TW |
| dc.subject | 非監督式標號 | zh_TW |
| dc.subject | 多重描述符 | zh_TW |
| dc.subject | 邊緣保持濾波 | zh_TW |
| dc.subject | multiple descriptors | en |
| dc.subject | scene alignment | en |
| dc.subject | edge-aware filtering | en |
| dc.subject | patch match | en |
| dc.subject | unsupervised labeling | en |
| dc.title | 使用多重描述符之圖像塊匹配於場景對位 | zh_TW |
| dc.title | Patch Match with Multiple Descriptors for Scene Alignment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林彥宇(Yen-Yu Lin) | |
| dc.contributor.oralexamcommittee | 林嘉文(Chia-Wen Lin),林文杰(Wen-Chieh Lin) | |
| dc.subject.keyword | 場景對位,多重描述符,非監督式標號,圖像塊匹配,邊緣保持濾波, | zh_TW |
| dc.subject.keyword | scene alignment,multiple descriptors,unsupervised labeling,patch match,edge-aware filtering, | en |
| dc.relation.page | 33 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 23.13 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
