請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57384完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晉玄 | |
| dc.contributor.author | Shen-Huan Liang | en |
| dc.contributor.author | 梁慎桓 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:43:56Z | - |
| dc.date.available | 2016-07-29 | |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-28 | |
| dc.identifier.citation | 1. Waldman A, Gilhar A, Duek L, Berdicevsky I (2001) Incidence of Candida in psoriasis--a study on the fungal flora of psoriatic patients. Mycoses 44: 77-81.
2. Valles J, Leon C, Alvarez-Lerma F (1997) Nosocomial bacteremia in critically ill patients: a multicenter study evaluating epidemiology and prognosis. Spanish Collaborative Group for Infections in Intensive Care Units of Sociedad Espanola de Medicina Intensiva y Unidades Coronarias (SEMIUC). Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 24: 387-395. 3. Sudbery P (2011) Growth of Candida albicans hyphae. Nature reviews Microbiology 9: 737-748. 4. Lohse M, Johnson A (2009) White-opaque switching in Candida albicans. Current opinion in microbiology 12: 650-654. 5. Slutsky B, Staebell M, Anderson J, Risen L, Pfaller M, et al. (1987) 'White-opaque transition': a second high-frequency switching system in Candida albicans. Journal of bacteriology 169: 189-197. 6. Daniels K, Srikantha T, Lockhart S, Pujol C, Soll D (2006) Opaque cells signal white cells to form biofilms in Candida albicans. The EMBO journal 25: 2240-2252. 7. Lin C-H, Kabrawala S, Fox E, Nobile C, Johnson A, et al. (2013) Genetic control of conventional and pheromone-stimulated biofilm formation in Candida albicans. PLoS pathogens 9: e1003305. 8. Kvaal C, Lachke S, Srikantha T, Daniels K, McCoy J, et al. (1999) Misexpression of the opaque-phase-specific gene PEP1 (SAP1) in the white phase of Candida albicans confers increased virulence in a mouse model of cutaneous infection. Infection and immunity 67: 6652-6662. 9. Odds F (1994) Pathogenesis of Candida infections. Journal of the American Academy of Dermatology 31: S2-5. 10. Geiger J, Wessels D, Lockhart S, Soll D (2004) Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infection and immunity 72: 667-677. 11. Lohse M, Johnson A (2008) Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PloS one 3: e1473. 12. Sasse C, Hasenberg M, Weyler M, Gunzer M, Morschhauser J (2013) White-opaque switching of Candida albicans allows immune evasion in an environment-dependent fashion. Eukaryotic cell 12: 50-58. 13. Lockhart S, Pujol C, Daniels K, Miller M, Johnson A, et al. (2002) In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 162: 737-745. 14. Miller M, Johnson A (2002) White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 110: 293-302. 15. Huang G, Wang H, Chou S, Nie X, Chen J, et al. (2006) Bistable expression of WOR1, a master regulator of white-opaque switching in Candida albicans. Proceedings of the National Academy of Sciences of the United States of America 103: 12813-12818. 16. Srikantha T, Borneman A, Daniels K, Pujol C, Wu W, et al. (2006) TOS9 regulates white-opaque switching in Candida albicans. Eukaryotic cell 5: 1674-1687. 17. Zordan R, Galgoczy D, Johnson A (2006) Epigenetic properties of white-opaque switching in Candida albicans are based on a self-sustaining transcriptional feedback loop. Proceedings of the National Academy of Sciences of the United States of America 103: 12807-12812. 18. Zordan R, Miller M, Galgoczy D, Tuch B, Johnson A (2007) Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS biology 5: e256. 19. Vinces M, Kumamoto C (2007) The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology (Reading, England) 153: 2877-2884. 20. Sonneborn A, Tebarth B, Ernst J (1999) Control of white-opaque phenotypic switching in Candida albicans by the Efg1p morphogenetic regulator. Infection and immunity 67: 4655-4660. 21. Lohse M, Hernday A, Fordyce P, Noiman L, Sorrells T, et al. (2013) Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proceedings of the National Academy of Sciences of the United States of America 110: 7660-7665. 22. Wang H, Song W, Huang G, Zhou Z, Ding Y, et al. (2011) Candida albicans Zcf37, a zinc finger protein, is required for stabilization of the white state. FEBS letters 585: 797-802. 23. Rikkerink E, Magee B, Magee P (1988) Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. Journal of bacteriology 170: 895-899. 24. Alby K, Bennett R (2009) Stress-induced phenotypic switching in Candida albicans. Molecular biology of the cell 20: 3178-3191. 25. Ramirez-Zavala B, Reuss O, Park Y-N, Ohlsen K, Morschhauser J (2008) Environmental induction of white-opaque switching in Candida albicans. PLoS pathogens 4: e1000089. 26. Huang G, Yi S, Sahni N, Daniels K, Srikantha T, et al. (2010) N-acetylglucosamine induces white to opaque switching, a mating prerequisite in Candida albicans. PLoS pathogens 6: e1000806. 27. Huang G, Srikantha T, Sahni N, Yi S, Soll D (2009) CO2 regulates white-to-opaque switching in Candida albicans. Current biology : CB 19: 330-334. 28. Kolotila M, Diamond R (1990) Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infection and immunity 58: 1174-1179. 29. Morschhauser J (2010) Regulation of white-opaque switching in Candida albicans. Medical microbiology and immunology 199: 165-172. 30. Xie J, Tao L, Nobile C, Tong Y, Guan G, et al. (2013) White-opaque switching in natural MTLa/α isolates of Candida albicans: evolutionary implications for roles in host adaptation, pathogenesis, and sex. PLoS biology 11: e1001525. 31. Millar J (1999) Stress-activated MAP kinase (mitogen-activated protein kinase) pathways of budding and fission yeasts. Biochemical Society symposium 64: 49-62. 32. Tibbles L, Woodgett J (1999) The stress-activated protein kinase pathways. Cellular and molecular life sciences : CMLS 55: 1230-1254. 33. Monge R, Roman E, Nombela C, Pla J (2006) The MAP kinase signal transduction network in Candida albicans. Microbiology (Reading, England) 152: 905-912. 34. Cheetham J, Smith D, da Silva Dantas A, Doris K, Patterson M, et al. (2007) A single MAPKKK regulates the Hog1 MAPK pathway in the pathogenic fungus Candida albicans. Molecular biology of the cell 18: 4603-4614. 35. San Jose C, Monge R, Perez-Diaz R, Pla J, Nombela C (1996) The mitogen-activated protein kinase homolog HOG1 gene controls glycerol accumulation in the pathogenic fungus Candida albicans. Journal of bacteriology 178: 5850-5852. 36. Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo A, Eisman B, et al. (2003) The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryotic cell 2: 351-361. 37. Smith D, Nicholls S, Morgan B, Brown A, Quinn J (2004) A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Molecular biology of the cell 15: 4179-4190. 38. Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, et al. (1999) Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. Journal of bacteriology 181: 3058-3068. 39. Arana D, Nombela C, Alonso-Monge R, Pla J (2005) The Pbs2 MAP kinase kinase is essential for the oxidative-stress response in the fungal pathogen Candida albicans. Microbiology (Reading, England) 151: 1033-1049. 40. Sato N, Kawahara H, Toh-e A, Maeda T (2003) Phosphorelay-regulated degradation of the yeast Ssk1p response regulator by the ubiquitin-proteasome system. Molecular and cellular biology 23: 6662-6671. 41. Kaserer A, Andi B, Cook P, West A (2009) Effects of osmolytes on the SLN1-YPD1-SSK1 phosphorelay system from Saccharomyces cerevisiae. Biochemistry 48: 8044-8050. 42. Tatebayashi K, Yamamoto K, Tanaka K, Tomida T, Maruoka T, et al. (2006) Adaptor functions of Cdc42, Ste50, and Sho1 in the yeast osmoregulatory HOG MAPK pathway. The EMBO journal 25: 3033-3044. 43. Roman E, Nombela C, Pla J (2005) The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Molecular and cellular biology 25: 10611-10627. 44. Chauhan N, Inglis D, Roman E, Pla J, Li D, et al. (2003) Candida albicans response regulator gene SSK1 regulates a subset of genes whose functions are associated with cell wall biosynthesis and adaptation to oxidative stress. Eukaryotic cell 2: 1018-1024. 45. Menon V, Li D, Chauhan N, Rajnarayanan R, Dubrovska A, et al. (2006) Functional studies of the Ssk1p response regulator protein of Candida albicans as determined by phenotypic analysis of receiver domain point mutants. Molecular microbiology 62: 997-1013. 46. Reuss O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341: 119-127. 47. Park Y-N, Morschhauser J (2005) Tetracycline-inducible gene expression and gene deletion in Candida albicans. Eukaryotic cell 4: 1328-1342. 48. 鄭仁華 (2014) 白色念珠球菌 Hog1 MAP kinase 對 White-Opaque 型態的轉換與穩定性之探討. 台北: 國立台灣大學. 49. Smith DA, Morgan BA, Quinn J (2010) Stress signalling to fungal stress activated protein kinase pathways. FEMS microbiology letters 306: 1-8. 50. Soll D (2014) The role of phenotypic switching in the basic biology and pathogenesis of Candida albicans. Journal of oral microbiology 6: 22993. 51. Bennett R, Johnson A (2005) Mating in Candida albicans and the search for a sexual cycle. Annual review of microbiology 59: 233-255. 52. Eisman B, Alonso-Monge R, Roman E, Arana D, Nombela C, et al. (2006) The Cek1 and Hog1 mitogen-activated protein kinases play complementary roles in cell wall biogenesis and chlamydospore formation in the fungal pathogen Candida albicans. Eukaryotic cell 5: 347-358. 53. Ramirez-Zavala B, Weyler M, Gildor T, Schmauch C, Kornitzer D, et al. (2013) Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans. PLoS pathogens 9: e1003696. 54. Tatebayashi K, Tanaka K, Yang H-Y, Yamamoto K, Matsushita Y, et al. (2007) Transmembrane mucins Hkr1 and Msb2 are putative osmosensors in the SHO1 branch of yeast HOG pathway. The EMBO journal 26: 3521-3533. 55. Gillum A, Tsay E, Kirsch D (1984) Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Molecular & general genetics : MGG 198: 179-182. 56. Bennett R, Uhl M, Miller M, Johnson A (2003) Identification and characterization of a Candida albicans mating pheromone. Molecular and cellular biology 23: 8189-8201. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57384 | - |
| dc.description.abstract | 白色念珠球菌 (Candida albicans) 為常見的人類伺機性真菌,主要生存在人類腸道中,當人體免疫力因為年齡、疾病或醫療治療而下降時,則會引發嚴重的系統性感染。白色念珠球菌存在一種特殊的型態轉換,稱為 White-Opaque Switching。White-Opaque 表現型轉換影響了許多白色念珠球菌的特性,包含型態上的不同、生物膜 (biofilm) 的生成、細胞交配 (mating) 的能力以及其對宿主免疫系統的反應。過去的研究顯示,此種型態轉換的轉換率受到外在環境的不同因子所影響,例如:氧氣濃度、溫度、二氧化碳濃度、氧化壓力以及菌珠生長速度。Hog1 Mitogen-Activated Protein Kinase (MAPK) 是一種 Stress-Activated Protein Kinase (SAPK) 訊息傳導路徑,會對細胞外在環境的滲透壓和氧化壓力產生反應,調控 Hog1 蛋白質的活性,進而影響下游的基因表現,使細胞產生適當反應。與釀酒酵母菌 (Saccharomyce cerevisiae) 不同的是,Sho1 蛋白質雖參與了滲透壓的訊息傳導,但並不影響 Hog1 蛋白質的活化。過去本實驗室研究發現,Hog1 也參與 White-Opaque Switching 的調控。將 Mating-Type Locus (MTL) 為同型合子 (homozygote) 的野生型 (wild type) 白色念珠球菌,包含 MTLa/a 以及 MTLα/α,培養於 Synthetic complete (SC) 培養基上,觀察其 White-to-Opaque 型態轉換率小於 10-3。當剔除 MTLa/a 或 MTLα/α 菌株的 HOG1 基因後,會使得菌株在此培養條件下的型態轉換率大幅提升至 100%。然而,此現象並未在異型合子 MTLa/α 菌株中被觀察到,表示White-to-Opaque 型態轉換仍然受到蛋白質 a1/α2 異二聚體 (heterodimer) 的抑制作用。於是,本研究欲更進一步探討 Hog1 MAPK訊息傳導路徑的上游分子 (Pbs2、Ssk2、Ssk1 與 Sln1),以及 Sho1 蛋白質在 White-Opaque 表現型轉換上扮演的角色。在同型合子菌株中剔除 PBS2 以及 SSK2 基因之後,同樣會誘導 100% 的 White-to-Opaque 型態轉換率。然而,剔除 SSK1 基因後,僅會造成 41 ± 8% 的菌落發生 White-to-Opaque 型態轉換,暗示 Ssk2 除了受到 Ssk1 的調控以外,可能還受到另一條未知的路徑的調控。剔除 SLN1 以及 SHO1 基因則不會誘發此型態轉換。西方墨點法 (Western blotting) 實驗結果顯示,Hog1 的磷酸化作用受到上游的 Pbs2、Ssk2、Ssk1 蛋白質的正向調控以及 Sln1 蛋白質的負向調控,而 Sho1 則不影響 Hog1 磷酸化。在誘導交配突出物 (mating projection) 的實驗中,發現 ssk1、ssk2 及 pbs2 突變株產生的交配突出物都較野生型菌株的短。此外,本研究意外發現,sho1 突變株在 Lee’s N-acetylglucosamine 培養基上培養數天後,其 White-to-Opaque 型態轉換率僅有 16.5 ± 3.60%,比野生型菌株的轉換率 32.7 ± 10.00% 低,表示 Sho1 蛋白質在白色念珠球菌中可能參與了一個未知的機制,調控 White-Opaque 型態轉換。根據上述實驗結果,本研究提出兩個在白色念珠球菌中調控 White-Opaque Switch 的機制,分別透過 Hog1 MAPK 路徑以及 Sho1 滲透壓訊息傳導路徑,並進一步說明 White-Opaque 表現型轉換的主要調控分子 Wor1 與這些路徑可能有交互作用。 | zh_TW |
| dc.description.abstract | Fungal pathogen Candida albicans is prevalent in healthy human populations, widely found in the normal gastrointestinal flora. Severe Systemic infections are commonly found in individuals with a depressed immune system, associated with aging, diseases or therapies. White-opaque switching is an epigenetic morphological change in C. albicans. This phenotypic switch regulates many properties including biofilm formation, virulence and sexual mating. The switching frequency is highly associated with different stresses, such as O2, temperature, CO2, oxidative stress and the growth rate. The osmotic response MAPK gene, HOG1, has been known for helping the cell cope with the osmotic and oxidative stress, although unlike Saccharomyce cerevisiae, Sho1, the osmosensor, does not play a central role in activation of Hog1 in C. albicans. In our previous study, Hog1 MAPK is involved in the regulation of white-opaque switching. Homozygous wild type strains (MTLa/a and MTLα/α) cannot undergo white-opaque switching on synthetic complete (SC) medium, with a switching frequency less than 10-3. Deletion of the HOG1 gene in MTLa/a or MTLα/α strains stimulates switching with a frequency of 100% on SC medium. Nevertheless, this phenomenon is not observed in a/α cells, suggesting that the phenotypic change is also inhibited by the a1/α2 complex. Therefore, in this study, I have further identified the role of four upstream components (Pbs2 MAPKK, Ssk2 MAPKKK, Ssk1 and Sln1) of the Hog1 SAPK pathway, and the osmosensor Sho1, the one that does not mediate Hog1 activation in C. albicans, in white-opaque switching. As expected, deletion of PBS2 and SSK2 in homozygous C. albicans cells induced 100% of phenotypic transition from white to opaque cells. Interestingly, inactivation of the SSK1 gene caused 41 ± 8% of colonies to form opaque cells, suggesting the existence of an alternative pathway regulating the white-opaque switch in the Hog1 MAPK pathway, given that the switching frequencies of ssk1 mutants were much lower than those of ssk2 and pbs2 mutants. On the other hand, homozygous sln1 and sho1 mutants remain white colonies on the SC medium. Western blotting revealed that the Hog1 phosphorylation is positively regulated by the upstream component, Pbs2, Ssk2 and Ssk1, but negatively regulated in both of MTLa/a and MTLa/α of sln1 mutants. Under pheromone treatment, ssk1, ssk2 and pbs2 mutants exhibited shorter mating projections compared to those of the wild-type strain. Surprisingly, the white-to-opaque switching experiment showed that sho1 mutants displayed a lower switching frequency (16.5 ± 3.60%) than those of the wild type (32.7 ± 10.00%) on Lee’s N-acetylglucosamine medium, implicating that an unknown mechanism is involved in this phenotypic change through the Sho1 pathway. Taken together, our study has provided two alternative signaling pathways (Hog1 MAPK and Sho1 osmosensing pathways) involved in this unique phenotypic switch in C. albicans and will elucidate how the interaction happens between the Wor1 and these pathways. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:43:56Z (GMT). No. of bitstreams: 1 ntu-103-R01b22011-1.pdf: 1700552 bytes, checksum: 7507694559a7a132cfd9a602855cd14f (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iv 目錄 vi 圖目錄 ix 表目錄 x 前言 1 白色念珠球菌 1 White-Opaque 型態轉換功能與細胞特性 1 White-Opaque 型態轉換之調控 2 Hog1 訊息傳導路徑 5 研究目的 8 材料與方法 9 實驗藥品與培養基 9 DNA 聚合酶鏈式反應 (Polymerase chain reaction, PCR) 9 洋菜膠體電泳分析 (Agarose gel electrophoresis) 9 DNA 片段回收 10 DNA 黏合 (ligation) 反應 10 大腸桿菌菌株轉形作用 (Transformation) 10 大腸桿菌質體 DNA 抽取 11 質體建構 11 構築 C. albicans 突變菌株及互補菌株 13 White-Opaque 表現型轉換 16 環境壓力適應性測試 16 SDS-PAGE 蛋白質電泳分析 17 西方墨點法 (Western blot) 17 費洛蒙 (pheromone) 誘導產生交配突出物 (mating projection) 18 C. albicans 菌株交配效率測試 19 流式細胞儀分析菌株染色體倍性 (ploidy) 19 結果 21 壹、Hog1 磷酸化調控與 White-Opaque 型態轉換兩者關連性之探討 21 1. PCR 鑑定 sho1、sln1、ssk1、pbs2、ssk2 突變株 21 2. 同型合子之 ssk1、ssk2、pbs2 突變株誘導 White-to-Opaque 表現型轉換 21 3. C. albicans 菌株環境壓力敏感性測試 23 4. Pbs2、Ssk2、Ssk1、Sln1 以及 Sho1 對 Hog1 磷酸化之影響 24 貳、Opaque 細胞交配功能之探討 25 1. 費洛蒙 (pheromone) 誘導交配突出物 (mating projection) 生成 25 2. C. albicans 交配菌株之 PCR 鑑定 25 3. C. albicans 突變株交配效率 26 參、Lee's NAG 培養基誘導 White-to-Opaque 型態轉換 27 Sho1 滲透壓感應蛋白質參與 White-to-Opaque 表現型轉換 27 討論 29 未來研究方向 34 圖表 35 參考資料 55 附錄 63 培養基 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 白色念珠球菌 | zh_TW |
| dc.subject | Hog1 訊息傳遞路徑 | zh_TW |
| dc.subject | Sho1 滲透壓訊息傳導路徑 | zh_TW |
| dc.subject | 氧化壓力 | zh_TW |
| dc.subject | 交配 | zh_TW |
| dc.subject | White-Opaque 型態轉換 | zh_TW |
| dc.subject | Candida albicans | en |
| dc.subject | white-opaque switching | en |
| dc.subject | Hog1 pathway | en |
| dc.subject | oxidative stress | en |
| dc.subject | Sho1 osmosensing pathway | en |
| dc.subject | mating | en |
| dc.title | Hog1 上游訊息傳導 Sln1-Ssk1-Ssk2-Pbs2 及 Sho1 滲透壓感受器與白色念珠球菌 White-Opaque 型態轉換關聯性之探討 | zh_TW |
| dc.title | Insights Into the Role of Hog1 Signaling Cascade Sln1-Ssk1-Ssk2-Pbs2 and Sho1 Osmosensor in the Regulation of White-Opaque Switching in Candida albicans | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 羅秀容,陳穎練,呂俊毅 | |
| dc.subject.keyword | 白色念珠球菌,White-Opaque 型態轉換,Hog1 訊息傳遞路徑,氧化壓力,Sho1 滲透壓訊息傳導路徑,交配, | zh_TW |
| dc.subject.keyword | Candida albicans,white-opaque switching,Hog1 pathway,oxidative stress,Sho1 osmosensing pathway,mating, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-28 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科技學系 | zh_TW |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 1.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
