Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57343
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙福杉
dc.contributor.authorChu-Hsuan LINen
dc.contributor.author林竹萱zh_TW
dc.date.accessioned2021-06-16T06:42:24Z-
dc.date.available2017-07-31
dc.date.copyright2014-07-31
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citation[1]行政院衛生福利部國民健康署 2013年6月6日http://health99.hpa.gov.tw/TXT/HealthyHeadlineZone/HealthyHeadlineDetai.aspx?TopIcNo=6798
[2] World Health Organization(WHO) 2013年7月http://www.who.int/mediacentre/factsheets/fs310/zh/
[3] Camm, A. John, et al. 'Guidelines for the management of atrial fibrillation The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC).' European heart journal 31.19 (2010): 2369-2429.
[4] Charanjit K. Jagait, 'AF AWARE CARDIOLOGY GROUPS CALL FOR GREATER AWARENESS AND BETTER EDUCATION ON ATRIAL FIBRILLATION.', 2009.
[5] Lee, Jinseok, et al. 'Atrial fibrillation detection using an iphone 4s.' (2013): 1-1.
[6] Tateno, K., and L. Glass. 'A method for detection of atrial fibrillation using RR intervals.' Computers in Cardiology 2000. IEEE, 2000.
[7] Thong, Tran, et al. 'Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes.' Biomedical Engineering, IEEE Transactions on 51.4 (2004): 561-569.
[8] Rieta, J. J., et al. 'Atrial fibrillation, atrial flutter and normal sinus rhythm discrimination by means of blind source separation and spectral parameters extraction.' Computers in Cardiology, 2002. IEEE, 2002.
[9] Huang, Zhongchao, et al. 'A novel spectral analysis method of atrial fibrillation signal based on Hilbert-Huang transform.' Engineering in Medicine and Biology Society, 2005.IEEE-EMBS 2005. 27th Annual International Conference of the. IEEE, 2006.
[10] Stridh, Martin, and Leif Sornmo. 'Spatiotemporal QRST cancellation techniques for analysis of atrial fibrillation.' Biomedical Engineering, IEEE Transactions on 48.1 (2001): 105-111.
[11] The Cardiovascular System: The Heart http://classes.midlandstech.edu/carterp/Courses/bio211/chap18/chap18.html
[12]心電圖學必備( The only EKG book you'll ever need 3e) Malcoms.Thaler,M.D著
[13] January CT, Wann LS, Alpert JS, Field ME, Calkins H, Murray KT,Cleveland Jr JC, Sacco RL, Cigarroa JE, Stevenson WG, Conti JB, Tchou PJ, Ellinor PT, Tracy CM,Ezekowitz MD, Yancy CW, 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: Executive Summary, Journal of the American College of Cardiology (2014), doi: 10.1016/j.jacc.2014.03.021.
[14] Schotten, Ulrich, et al. 'Pathophysiological mechanisms of atrial fibrillation: a translational appraisal.' Physiological Reviews 91.1 (2011): 265-325.
[15] Camm, A. John, et al. 'Guidelines for the management of atrial fibrillation The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC).' European heart journal 31.19 (2010): 2369-2429.
[16] Bogun, Frank, et al. 'Misdiagnosis of atrial fibrillation and its clinical consequences.' The American journal of medicine 117.9 (2004): 636-642.
[17] Alcaraz, Raul, and Jose Joaquin Rieta. 'Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation.' Physiological measurement 29.1 (2008): 65.
[18] The AF Termination Challenge Database http://physionet.org/physiobank/database/aftdb/
[19] The MIT-BIH Atrial Fibrillation Database http://physionet.org/physiobank/database/afdb/
[20] The MIT-BIH Normal Sinus Rhythm Database http://physionet.org/physiobank/database/nsrdb/
[21] The MIT-BIH Supraventricular Arrhythmia Database http://physionet.org/physiobank/database/svdb/
[22] Huang, Norden E., et al. 'The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis.' Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454.1971 (1998): 903-995. 24
[23] 陳振雄.'應用希爾伯特-黃轉換之訊號濾波研究.'Journal of Science and Engineering Technology 6.1 (2010): 75-84.
[24] Cutmore, Tim RH, and Daniel A. James. 'Identifying and reducing noise in psychophysiological recordings.' International Journal of Psychophysiology 32.2 (1999): 129-150.
[25] Golińska, Agnieszka Kitlas. 'Detrended Fluctuation Analysis (DFA) in biomedical signal processing: selected examples.'
[26] Thakor, Nitish V., John G. Webster, and Willis J. Tompkins. 'Estimation of QRS complex power spectra for design of a QRS filter.' Biomedical Engineering, IEEE Transactions on 11 (1984): 702-706.
[27] Tang, Jing-tian, et al. 'The Algorithm of R peak detection in ECG based on empirical Mode Decomposition.' Natural Computation, 2008. ICNC'08. Fourth International Conference on. Vol. 5. IEEE, 2008.
[28] So, H. H., and K. L. Chan. 'Development of QRS detection method for real-time ambulatory cardiac monitor.' Engineering in Medicine and Biology Society, 1997. Proceedings of the 19th Annual International Conference of the IEEE. Vol. 1. IEEE, 1997.
[29] Slocum, Janet, Alan Sahakian, and Steven Swiryn. 'Diagnosis of atrial fibrillation from surface electrocardiograms based on computer-detected atrial activity.' Journal of Electrocardiology 25.1 (1992): 1-8.
[30] Alcaraz, Raul, and Jose Joaquin Rieta. 'Adaptive singular value cancelation of ventricular activity in single-lead atrial fibrillation electrocardiograms.' Physiological measurement 29.12 (2008): 1351.
[31] Pincus, Steven M. 'Approximate entropy as a measure of system complexity.' Proceedings of the National Academy of Sciences 88.6 (1991): 2297-2301.
[32] Richman, Joshua S., and J. Randall Moorman. 'Physiological time-series analysis using approximate entropy and sample entropy.' American Journal of Physiology-Heart and Circulatory Physiology 278.6 (2000): H2039-H2049.
[33] Alcaraz, Raul, and Jose J. Rieta. 'Application of Wavelet Entropy to Predict Atrial Fibrillation Progression from the Surface ECG.' Computational and mathematical methods in medicine 2012 (2012).
[34] Quiroga, R. Quian, et al. 'Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations.' Biological Cybernetics 84.4 (2001): 291-299.
[35] Rosso, Osvaldo A., et al. 'Wavelet entropy: a new tool for analysis of short duration brain electrical signals.' Journal of neuroscience methods 105.1 (2001): 65-75.
[36] Natwong, B., et al. 'Wavelet entropy analysis of the high resolution ECG.' Industrial Electronics and Applications, 2006 1ST IEEE Conference on. IEEE,2006
[37] Alcaraz, Raul, and Jose Joaquin Rieta. 'Wavelet bidomain sample entropy analysis to predict spontaneous termination of atrial fibrillation.' Physiological measurement 29.1 (2008): 65.
[38] Wu, Ming-Chya, et al. 'Phase statistics approach to human ventricular fibrillation.' Physical Review E 80.5 (2009): 051917.
[39] Rieta, J. J., et al. 'Atrial fibrillation, atrial flutter and normal sinus rhythm discrimination by means of blind source separation and spectral parameters extraction.' Computers in Cardiology, 2002. IEEE, 2002.
[40] Millet-Roig, J., et al. 'Surface-ECG atrial activity extraction via blind source separation: spectral validation.' Computers in Cardiology, 2002. IEEE, 2002.
[41] Jyh-Shing Roger Jang, 'Machine Learning Toolbox', http://mirlab.org/jang/matlab/toolbox/machineLearning.
[42] Whitney, A. Wayne. 'A direct method of nonparametric measurement selection.' Computers, IEEE Transactions on 100.9 (1971): 1100-1103.
[43] Chang C-C and Lin C-J . LIBSVM : a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.
Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm
[44] Burges, Christopher JC. 'A tutorial on support vector machines for pattern recognition.' Data mining and knowledge discovery 2.2 (1998): 121-167
[45] Swets, John A. 'Measuring the accuracy of diagnostic systems.' Science 240.4857 (1988): 1285-1293.
[46] Couceiro, Ricardo, et al. 'Detection of Atrial Fibrillation using model-based ECG analysis.' Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. IEEE, 2008.
[47] Cerutti, S., et al. 'Analysis of the dynamics of RR interval series for the detection of atrial fibrillation episodes.' Computers in Cardiology 1997. IEEE, 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57343-
dc.description.abstract心房顫動為最常見的心律不整疾病之一,並存在著許多風險如中風或全身性血管栓塞,但心房顫動患者通常不會有明顯的症狀,容易被忽略而嚴重影響日後生活,因此如何早期準確檢測出心房顫動為一項重要課題。
本研究以三個心房顫動主要特徵(1)心臟跳動不規則(2)P波不明顯(3)心房活動關係為基礎,提出了一套特徵擷取及特徵選取方式,為避免心房顫動與其他心室上心律不整疾病混淆,使用了三種不同的資料庫進行比較分析,配合Support Vector Machine分類器以及交叉驗證方式,心房顫動及正常心電圖辨識率達95.67%,而心室上心律不整與正常心電圖辨識率則為96.67%。
zh_TW
dc.description.abstractAtrial fibrillation (AF) is a common arrhythmia that can lead several risks to people who suffer from the illness, such as stroke or heart failure. However, the patients do not have obvious symptom, making it easy to ignore and seriously affect the future of life. Therefore, early and truly detection of AF becomes an important issue.
In this study, we raise a feature extraction and feature selection method base on three main physiological characteristics of AF: (1) heart rate irregular (2) P wave unobvious, and (3) atrial activity relationship. In order to avoid AF and other supraventricular arrhythmia be confused, we use three different database for comparative analysis. Finally, the SVM classifier and cross validation method were used to discriminate between AF and Normal ECG with a 95.67% accuracy, and supraventricular arrhythmia, and Normal ECG with 96.67% accuracy by considering only three features. For the discrimination of three categories, a recognition rate of 92.23% was achieved.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:42:24Z (GMT). No. of bitstreams: 1
ntu-103-R01548025-1.pdf: 1996576 bytes, checksum: 197d24c0422aef905409fd1e1396ffb8 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝… i
摘要… ii
Abstract iii
目錄… iv
圖目錄 vii
表目錄 viii
專有名詞縮寫對照表 ix
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 心室上心律不整簡介 3
1.3.1 心室上心律不整 3
1.3.2 心房顫動 4
1.3.3 心電圖於心房顫動檢測之困難 6
二、 研究方法 7
2.1 實驗資料庫 8
2.2 希爾伯特黃轉換(Hilbert Huang Transform, HHT) 8
2.2.1 經驗模態分解(Empirical mode decomposition, EMD) 8
2.2.2 希爾伯特轉換(Hilbert transform, HT) 9
2.3 訊號前處理 10
2.3.1 內插(Interpolation) 10
2.3.2 訊號去趨勢(Detrend) 10
2.3.3 移動平均濾波(Moving-average filter) 10
2.4 心電圖特徵點偵測 11
2.4.1 QRS complex之偵測 11
2.4.2 P波之偵測 12
2.5 心房活動擷取(Atrial Activity Extraction) 13
2.6 特徵擷取 14
2.6.1 心律變異分析(Heart rate variability, HRV) 14
2.6.2 其他時域特徵 15
2.6.3 熵(Entropy) 16
2.6.4 小波熵(Wavelet Entropy) 18
2.6.5 相位分佈(Phase distribution) 20
2.6.6 心房活動特徵 21
2.7 特徵挑選 22
2.7.1 逐次前饋式搜索法(Sequential Forward Selection, SFS) 22
2.7.2 窮舉法(Exhaustive method) 23
2.8 分類方式 24
2.8.1 交叉驗證(cross validation) 24
2.8.2 支持向量機(Support Vector Machine) 25
三、 實驗結果 26
3.1 實驗評估標準 26
3.2 單一特徵分析 27
3.3 辨別結果 28
3.3.1 辨別兩類疾病 28
3.3.2 辨別三類 31
3.4 其他資料庫驗證 32
四、 討論 33
4.1 其他資料庫測試 33
4.2 最佳特徵說明 33
4.3 其他文獻比較 34
五、 結論與未來發展 35
5.1 結論 35
5.2 未來發展 35
參考文獻 36
dc.language.isozh-TW
dc.subject非線性特徵zh_TW
dc.subject心房顫動zh_TW
dc.subject心室上心律不整zh_TW
dc.subject支持向量機zh_TW
dc.subject希爾伯特-黃 轉換zh_TW
dc.subjectHilbert-Huang transformen
dc.subjectAtrial fibrillationen
dc.subjectsupport vector machineen
dc.subjectnon-linear feature.en
dc.subjectsupraventricular arrhythmiaen
dc.title心房顫動與心室上心律不整之偵測zh_TW
dc.titleDetection of Atrial Fibrillation and Supraventricular arrhythmiaen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor廖文劍
dc.contributor.oralexamcommittee郭德勝,黃基礎,謝建興,曾乙立
dc.subject.keyword心房顫動,心室上心律不整,支持向量機,希爾伯特-黃 轉換,非線性特徵,zh_TW
dc.subject.keywordAtrial fibrillation,supraventricular arrhythmia,support vector machine,Hilbert-Huang transform,non-linear feature.,en
dc.relation.page39
dc.rights.note有償授權
dc.date.accepted2014-07-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.95 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved