Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57308
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林雨德(Yu-Teh Kirk Lin)
dc.contributor.authorChing-Ho Houen
dc.contributor.author侯慶賀zh_TW
dc.date.accessioned2021-06-16T06:41:08Z-
dc.date.available2015-08-01
dc.date.copyright2014-08-01
dc.date.issued2014
dc.date.submitted2014-07-29
dc.identifier.citationAbolins, S. R., Pocock, M. J. O., Hafalla, J. C. R., Riley, E. M., & Viney, M. E. (2011). Measures of immune function of wild mice, Mus musculus. Molecular Ecology, 20, 881-892.
Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A., & McGregor, I. S. (2005). The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neuroscience and Biobehavioral Reviews, 29, 1123-1144.
Barber, I., & Huntingford, F. A. (1995). The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour, 132, 1223-1240.
Blake, R. W., Kwok, P. Y. L., & Chan, K. H. S. (2006). Effects of two parasites, Schistocephalus solidus (Cestoda) and Bunodera spp. (Trematoda), on the escape fast-start performance of three-spined sticklebacks. Journal of Fish Biology, 69, 1345-1355.
Bradley, J. E., & Jackson, J. A. (2008). Measuring immune system variation to help understand host-pathogen community dynamics. Parasitology, 135, 807-823.
Brambilla, A., von Hardenberg, A., Kristo, O., Bassano, B., & Bogliani, G. (2013). Don't spit in the soup: faecal avoidance in foraging wild Alpine ibex, Capra ibex. Animal Behaviour, 86, 153-158.
Brown, J. S., & Kotler, B. P. (2007). Foraging and the ecology of fear. In: Foraging: Behavior and Ecology (Ed. by D. W. Stephens. J. S. Brown & R. C. Ydenberg): Chicago: University of Chincago Press.
Cerri, R. D., & Fraser, D. F. (1983). Predation and risk in foraging minnows - Balancing conflicting demands. American Naturalist, 121, 552-561.
Coltherd, J. C., Bunger, L., Kyriazakis, I., & Houdijk, J. G. M. (2009). Genetic growth potential interacts with nutrition on the ability of mice to cope with Heligmosomoides bakeri infection. Parasitology, 136, 1043-1055.
Cooper, J., Gordon, I. J., & Pike, A. W. (2000). Strategies for the avoidance of faeces by grazing sheep. Applied Animal Behaviour Science, 69, 15-33.
Diaz, M., & Alonso, C. L. (2003). Wood mouse Apodemus sylvaticus winter food supply: Density, condition, breeding, and parasites. Ecology, 84, 2680-2691.
Dizney, L., & Dearing, M. D. (2013). The role of behavioural heterogeneity on infection patterns: implications for pathogen transmission. Animal Behaviour, 86, 911-916.
Ezenwa, V. O. (2004). Selective defecation and selective foraging: Antiparasite behavior in wild ungulates? Ethology, 110, 851-862.
Foreyt, W. J. (2001). Veterinary parasitology reference manual. Iowa City, IA, USA: Iowa State University Press.
Grubb, T. C., & Greenwald, L. (1982). Sparrows and a brushpile - foraging responses to different combinations of predation risk and energy-cost. Animal Behaviour, 30, 637-640.
Gunn, A., & Irvine, R. J. (2003). Subclinical parasitism and ruminant foraging strategies - a review. Wildlife Society Bulletin, 31, 117-126.
Hanni, K. D., Mazet, J. A. K., Gulland, F. M. D., Estes, J., Staedler, M., Murray, M. J., & Jessup, D. A. (2003). Clinical pathology and assessment of pathogen exposure in southern and Alaskan sea otters. Journal of Wildlife Diseases, 39, 837-850.
Hawley, D. M., & Altizer, S. M. (2011). Disease ecology meets ecological immunology: understanding the links between organismal immunity and infection dynamics in natural populations. Functional Ecology, 25, 48-60.
Hughes, J., Albon, S. D., Irvine, R. J., & Woodin, S. (2009). Is there a cost of parasites to caribou? Parasitology, 136, 253-265.
Hutchings, M. R., Gordon, I. J., Robertson, E., Kyriazakis, I., & Jackson, F. (2000). Effects of parasitic status and level of feeding motivation on the diet selected by sheep grazing grass/clover swards. Journal of Agricultural Science, 135, 65-75.
Hutchings, M. R., Kyriazakis, I., & Gordon, I. J. (2001). Herbivore physiological state affects foraging trade-off decisions between nutrient intake and parasite avoidance. Ecology, 82, 1138-1150.
Kan, M. L. (1995). Food habits and habitat use of three rodent species (Apodemus semotus, Eothenomys melanogaster, Micromys minutus) in Wulin. (Master), National Taiwan University, Tapei, Taiwan.
Kavaliers, M., Choleris, E., Agmo, A., & Pfaff, D. W. (2004). Olfactory-mediated parasite recognition and avoidance: linking genes to behavior. Hormones and Behavior, 46, 272-283.
Klein, S. L. (2000). Hormones and mating system affect sex and species differences in immune function among vertebrates. Behavioural Processes, 51, 149-166.
Kristan, D. M., & Hammond, K. A. (2003). Physiological and morphological responses to simultaneous cold exposure and parasite infection by wild-derived house mice. Functional Ecology, 17, 464-471.
Lima, S. L., Valone, T. J., & Caraco, T. (1985). Foraging-efficiency predation-risk trade-off in the grey Squirrel. Animal Behaviour, 33, 155-165.
Lin, L. K., & Shiraishi, S. (1992). Demography of the formosan wood mouse, Apodemus Semotus. Journal of the Faculty of Agriculture Kyushu University, 36, 245-266.
Lo, H. Y. (2014). The effects of parasites on host survival, reproductive performance and body condition in Apodemus semotus. (Master), National Taiwan Normal University, Taipei, Taiwan.
Martin, L. B., Hawley, D. M., & Ardia, D. R. (2011). An introduction to ecological immunology. Functional Ecology, 25, 1-4.
McDermott, J. R., Leslie, F. C., D'Amato, M., Thompson, D. G., Grencis, R. K., & Mclaughlin, J. T. (2006). Immune control of food intake: enteroendocrine cells are regulated by CD4(+) T lymphocytes during small intestinal inflammation. Gut, 55, 492-497.
Meyer-Lucht, Y., & Sommer, S. (2005). MHC diversity and the association to nematode parasitism in the yellow-necked mouse (Apodemus flavicollis). Molecular Ecology, 14, 2233-2243.
Milinski, M. (1985). Risk of predation of parasitized sticklebacks (Gasterosteus aculeatus L.) under competition for food. Behaviour, 93, 203-215.
Pedersen, A. B., & Antonovics, J. (2013). Anthelmintic treatment alters the parasite community in a wild mouse host. Biology Letters, 9.
Poulin, R. (1993). Age-dependent effects of parasites on antipredator responses in 2 New-Zealand fresh-water fish. Oecologia, 96, 431-438.
Poulin, R. (1996). Sexual inequalities in helminth infections: A cost of being a male? American Naturalist, 147, 287-295.
Purohit, K., Bhowmik, M. K., Roy, S., Singh, A. S., & Mukhopadhayay, S. K. (2003). Some haematobiochemical studies on Garole sheep infected with amphistome parasites. Indian Journal of Animal Sciences, 73, 1120-1122.
Quesenberry, K. C. & Carpenter J. W. (2011). Ferrets, rabbits and rodents: Clinical medicine and surgery.: Saunders.
Raveh, A., Kotler, B. P., Abramsky, Z., & Krasnov, B. R. (2011). Driven to distraction: detecting the hidden costs of flea parasitism through foraging behaviour in gerbils. Ecology Letters, 14, 47-51.
Rynkiewicz, E. C., Hawlena, H., Durden, L. A., Hastriter, M. W., Demas, G. E., & Clay, K. (2013). Associations between innate immune function and ectoparasites in wild rodent hosts. Parasitology Research, 112, 1763-1770.
Sajid, M. S., Iqbal, Z., Muhammad, G., & Iqbal, M. U. (2006). Immunomodulatory effect of various anti-parasitics: a review. Parasitology, 132, 301-313.
Scantlebury, M., Waterman, J. M., Hillegass, M., Speakman, J. R., & Bennett, N. C. (2007). Energetic costs of parasitism in the Cape ground squirrel Xerus inauris. Proceedings of the Royal Society B-Biological Sciences, 274, 2169-2177.
Schalk, G., & Forbes, M. R. (1997). Male biases in parasitism of mammals: Effects of study type, host age, and parasite taxon. Oikos, 78, 67-74.
Schwanz, L. E., Previtali, M. A., Gomes-Solecki, M., Brisson, D., & Ostfeld, R. S. (2012). Immunochallenge reduces risk sensitivity during foraging in white-footed mice. Animal Behaviour, 83, 155-161.
Seppala, O., Karvonen, A., & Valtonen, E. T. (2008). Shoaling behaviour of fish under parasitism and predation risk. Animal Behaviour, 75, 145-150.
Shender, L. A., Botzler, R. G., & George, T. L. (2002). Analysis of serum and whole blood values in relation to helminth and ectoparasite infections of feral pigs in Texas. Journal of Wildlife Diseases, 38, 385-394.
Smith, L. A., White, P. C. L., Marion, G., & Hutchings, M. R. (2009). Livestock grazing behavior and inter- versus intraspecific disease risk via the fecal-oral route. Behavioral Ecology, 20, 426-432.
Stien, A., Irvine, R. J., Ropstad, E., Halvorsen, O., Langvatn, R., & Albon, S. D. (2002). The impact of gastrointestinal nematodes on wild reindeer: experimental and cross-sectional studies. Journal of Animal Ecology, 71, 937-945.
van der Wal, R., Irvine, J., Stien, A., Shepherd, N., & Albon, S. D. (2000). Faecal avoidance and the risk of infection by nematodes in a natural population of reindeer. Oecologia, 124, 19-25.
Walsh, P. T., McCreless, E., & Pedersen, A. B. (2013). Faecal avoidance and selective foraging: do wild mice have the luxury to avoid faeces? Animal Behaviour, 86, 559-566.
Wolkers, J., Wensing, T., Bruinderink, G. W. T. A. G., & Schonewille, J. T. (1994). Lungworm and stomach worm infection in relation to body-fat reserves and blood composition in wild boar (Sus Scrofa). Veterinary Quarterly, 16, 193-195.
Zuk, M., & McKean, K. A. (1996). Sex differences in parasite infections: Patterns and processes. International Journal for Parasitology, 26, 1009-1023.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57308-
dc.description.abstract動物的覓食行為受到許多因子影響,例如外在風險以及個體狀況。過去研究主要關注在掠食風險如何影響動物的覓食行為,對於其他風險種類,例如被寄生的風險則研究相對較少。近期研究指出,動物的確有可能藉由避免利用被糞便污染的區塊覓食,來降低被寄生的風險。本研究利用野外與室內實驗,檢測是否經由驅蟲藥(ivermectin)減少寄生蟲的台灣森鼠(Apodemus semotus)在覓食行為上會有改變。在野外實驗部分,我先於捕捉到的野生森鼠身上植入晶片,再於野外放置三種處理的食物站,包含:(1)高寄生蟲卵糞便污染的食物;(2)低寄生蟲卵糞便污染的食物;(3)無糞便污染的食物。最後以晶片掃描器來記錄前來食物站的老鼠晶片號碼與所待的時間。經由驅蟲藥處理過的老鼠在放置糞便處理的食物站待的時間較控制組短。在室內實驗部分,我比較有無驅蟲藥之森鼠,在能量攝取、生物量與血液生化值上的差異。經驅蟲藥處理過的雄性能量攝取較高,雌性則是相反。驅蟲藥處理對於森鼠的生物量與血液生化值皆沒有影響。本研究證實寄生蟲移除可以改變宿主對風險的敏感度。因此,寄生蟲在宿主覓食行為上不但可能扮演一個重要的角色,寄生蟲本身也可能因此獲得提升傳播率的好處。zh_TW
dc.description.abstractForaging behavior can be influenced by many factors, including risk and individual condition. While predation risk has been shown to influence a forager’s patch use, the effects of other types of risk, such as parasitism risk, are rarely explored. Recent evidence suggests that hosts may reduce the amount of time spent foraging in a patch contaminated with feces, potentially to avoid parasite infection. In this study, I examined whether wild Formosan field mice, Apodemus semotus, alter their foraging behavior in response to parasite removal treatment using both field and laboratory experiments. I used ivermectin to remove helminth parasites from A. semotus. In the field experiment, I live-trapped the rodents and marked them with passive integrated transponder (PIT) tags. I set up food stations, each consisting of 3 food trays: (1) food contaminated with feces that have high numbers of parasite eggs (high risk patch); (2) food contaminated with feces that have low numbers of parasite eggs (low risk patch); and (3) food not contaminated with feces (no risk patch). A data logger and a PIT antenna were attached to each food tray to record the time an individual spent in that patch. I found that A. semotus treated with ivermectin spent less time in risky patches (high- and low-risk patches) than no-risk patches. In the laboratory experiment, I measured and compared energy intake, body mass, hematological and serum biochemical parameters of ivermectin-treated and control groups. Ivermectin-treated males had higher energy intake than the control whereas ivermectin-treated females showed the opposite pattern. However, I did not find parasite removal effects on body mass, immune function (hematological parameters) or nutritional status (serum biochemical parameters). This study provided empirical evidence that parasite removal can influence risk sensitivity in a wild rodent. Thus, parasites may play a role in hosts’ foraging behavior and by doing so, benefit from improved transmission.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:41:08Z (GMT). No. of bitstreams: 1
ntu-103-R01b44003-1.pdf: 1723385 bytes, checksum: 51acaddb49e042c8c8e31a7ec51b99db (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
Abstract iv
Introduction 1
Materials & Methods 5
Results 12
Discussion 14
References 18
Appendices 41
dc.language.isoen
dc.title寄生蟲移除改變台灣森鼠的覓食行為zh_TW
dc.titleParasite removal affects foraging behavior of
the Formosan field mouse (Apodemus semotus)
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.coadvisor李佩珍(Pei-Jen Li Shaner)
dc.contributor.oralexamcommittee林良恭,吳聲海
dc.subject.keyword宿主-寄生蟲,腸胃道寄生蟲,最佳覓食,區塊利用,風險敏感度,齧齒動物,zh_TW
dc.subject.keywordhost-parasite,intestinal helminths,optimal foraging,patch use,risk sensitivity,rodent,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved