請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57296完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞(Ming-Jium Shieh) | |
| dc.contributor.author | Ming-Feng Wei | en |
| dc.contributor.author | 魏名峰 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:40:44Z | - |
| dc.date.available | 2017-08-04 | |
| dc.date.copyright | 2014-08-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-30 | |
| dc.identifier.citation | 1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69–90.
2. Mulsow J, Merkel S, Agaimy A, Hohenberger W. Outcomes following surgery for colorectal cancer with synchronous peritoneal metastases. Br J Surg 2011; 98: 1785-91. 3. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med 2006; 355: 1253-61. Review. 4. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007; 445:111-5. 5. Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol 2005; 37:715–9. 6. Horst D, Kriegl L, Engel J, Kirchner T, Jung A. CD133 expression is an independent prognostic marker for low survival in colorectal cancer. Br J Cancer 2008; 99:1285–9. 7. Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev 2004; 14:43-7. 8. Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 2003; 3:895-902. 9. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE. Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted into SCID mice. Science 1992; 255:1137-41. 10. Song LL, Miele L. Cancer stem cells--an old idea that’s new again: implications for the diagnosis and treatment of breast cancer. Expert Opin Biol Ther 2007; 7: 431-8. 11. Jin F, Zhao L, Zhao HY, Guo SG, Feng J, Jiang XB, et al. Comparison between cells and cancer stem-like cells isolated from glioblastoma and astrocytoma on expression of anti-apoptotic and multidrug resistance–associated protein genes. Neuroscience 2008; 154:541–50. 12. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5:275–84. 13. Baumann M, Krause M, Hill R. Exploring the role of cancer stem cells in radioresistance. Nat Rev Cancer 2008; 8:545–54. 14. Rich JN. Cancer stem cells in radiation resistance. Cancer Res 2007; 67:8980–4. 15. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, Goodell MA, Brenner MK. A distinct ‘‘side population’’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004; 101:14228–33. 16. Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol 2005; 37:720–5. 17. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, et al. Identification of cells initiating human melanomas. Nature 2008; 451:345–9. 18. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444:756–60. 19. Wang JB, Liu LX. Use of photodynamic therapy in malignant lesions of stomach, bile duct, pancreas, colon and rectum. Hepatogastroenterology 2007; 54:718-24. 20. Geltzer A, Turalba A, Vedula SS. Surgical implantation of steroids with antiangiogenic characteristics for treating neovascular age-related macular degeneration. Cochrane Database Syst Rev 2013; 1:CD005022. 21. Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer 2003; 3:380-7. 22. Moan J, Berg K. Photochemotherapy of cancer: experimental research. Photochem Photobiol 1992; 55:931–48. 23. Weishaupt KR, Gomer CJ, Dougherty TJ. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res 1976; 36:2326–9. 24. Peng Q, Moan J, Nesland JM. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol 1996; 20:109–129. 25. Piette J, Volanti C, Vantieghem A, Matroule JY, Habraken Y, Agostinis P. Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers. Biochem Pharmacol 2003; 66:1651–9. 26. Sitnik TM, Hampton JA, Henderson BW. Reduction of tumour oxygenation during and after photodynamic therapy in vivo: effects of fluence rate. Br J Cancer 1998; 77:1386– 94. 27. Henderson BW, Busch TM, Vaughan LA, Frawley NP, Babich D, Sosa TA, Zollo JD, Dee AS, Cooper MT, Bellnier DA, et al. Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate. Cancer Res 2000; 60:525–9. 28. Chen Q, Huang Z, Chen H, Shapiro H, Beckers J, Hetzel FW. Improvement of tumor response by manipulation of tumor oxygenation during photodynamic therapy. Photochem Photobiol 2002; 76:197–203. 29. Engbrecht BW, Menon C, Kachur AV, Hahn SM, Fraker DL. Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model. Cancer Res 1999; 59:4334–42. 30. Fingar VH, Kik PK, Haydon PS, Cerrito PB, Tseng M, Abang E, Wieman TJ. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br J Cancer 1999; 79:1702–8. 31. Kondo M, Hirota N, Takaoka T, Kajiwara M. Heme-biosynthetic enzyme activities and porphyrin accumulation in normal liver and hepatoma cell lines of rat. Cell Biol Toxicol 1993; 9:95–105. 32. Uehlinger P, Zellweger M, Wagnieres G, Juillerat-Jeanneret L, van den Bergh H, Lange N. 5-Aminolevulinic acid and its derivatives: physical chemical properties and protoporphyrin IX formation in cultured cells. J Photochem Photobiol B 2000; 54:72–80. 33. Sieroń A, Adamek M, Kawczyk-Krupka A, Mazur S, Ilewicz L. Photodynamic therapy (PDT) using topically applied delta-aminolevulinic acid (ALA) for the treatment of oral leukoplakia. J Oral Pathol Med 2003; 32:330–6. 34. Kubler A, Haase T, Rheinwald M, Barth T, Muhling J. Treatment of oral leukoplakia by topical application of 5-aminolevulinic acid. Int J Oral Maxillofac Surg 1998; 27:466–9. 35. Gomer CJ, Ryter SW, Ferrario A, Rucker N, Wong S, Fisher AM. Photodynamic therapy-mediated oxidative stress can induce expression of heat shock proteins. Cancer Res 1996; 56:2355–60. 36. Xue LY, Agarwal ML, Varnes ME. Elevation of GRP-78 and loss of Hsp70 following photodynamic treatment of V79 cells: sensitization by nigericin. Photochem Photobiol 1995; 62:135–43. 37. Robey RW, Steadman K, Polgar O, Bates SE. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 2005; 4:187-94. 38. Gomer CJ, Luna M, Ferrario A, Rucker N. Increased transcription and translation of heme oxygenase in Chinese hamster fibroblasts following photodynamic stress or Photofrin II incubation. Photochem Photobiol 1991; 53:275–9. 39. Brackett CM, Owczarczak B, Ramsey K, Maier PG, Gollnick SO. IL-6 Potentiates Tumor Resistance to Photodynamic Therapy (PDT). Lasers Surg Med 2011; 43:676-85. 40. Morgan J, Jackson JD, Zheng X, Pandey SK, Pandey RK. Substrate Affinity of Photosensitizers Derived from Chlorophyll-a: The ABCG2 Transporter Affects the Phototoxic Response of Side Population Stem Cell-like Cancer Cells to Photodynamic Therapy. Mol Pharm 2010; 7:1789–804. 41. Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000; 290:1717–21. 42. Levine B. Eating oneself and uninvited guests: autophagy-related pathways in cellular defense. Cell 2005; 120:159–62. 43. Eskelinen EL. New insights into the mechanisms of macroautophagy in mammalian cells. Int Rev Cell Mol Biol 2008; 266:207–47. 44. Codogno P, Meijer AJ. Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 2005; 12 Suppl 2:1509–18. 45. Liu EY, Ryan KM. Autophagy and cancer--issues we need to digest. J Cell Sci 2012; 125:2349-58. 46. White E, DiPaola RS. The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 2009; 15:5308–16. 47. Kim EH, Sohn S, Kwon HJ, Kim SU, Kim MJ, Lee SJ, et al. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Cancer Res 2007; 67:6314–24. 48. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 2008; 68:1485–94. 49. Reiners JJ Jr, Agostinis P, Berg K, Oleinick NL, Kessel D. Assessing autophagy in the context of photodynamic therapy. Autophagy 2010; 6:7-18. 50. Shen S, Kepp O, Kroemer G. The end of autophagic cell death? Autophagy 2012; 8:1-3. 51. Carew JS, Kelly KR, Nawrocki ST. Autophagy as a target for cancer therapy: new developments. Cancer Manag Res 2012; 4:357-65. 52. Guo XL, Li D, Sun K, Wang J, Liu Y, Song JR, et al. Inhibition of autophagy enhances anticancer effects of bevacizumab in hepatocarcinoma. J Mol Med (Berl) 2013; 91:473-83. 53. He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G, et al. Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 2012; 8:1811-21. 54. Korbelik M, Zhang W, Separovic D. Monitoring ceramide and sphingosine-1-phosphate levels in cancer cells and macrophages from tumours treated by photodynamic therapy. Photochem Photobiol Sci 2012 [Epub ahead of print] 55. Hannun YA, Luberto C, Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 2001; 40:4893-903. 56. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 2008; 9:139-50. 57. Lavieu G, Scarlatti F, Sala G, Levade T, Ghidoni R, Botti J, et al. Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy 2007; 3:45-7. 58. Smith J, Ladi E, Mayer-Proschel M, Noble M. Redox state is a central modulator of the balance between self-renewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A 2000; 97:10032-7. 59. Tsatmali M, Walcott EC, Crossin KL. Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors. Brain Res 2005; 1040:137-50. 60. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, Nomiyama K, Hosokawa K, Sakurada K, Nakagata N, et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431:997-1002. 61. Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, McDowell EP, Lazo-Kallanian S, Williams IR, Sears C, et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128:325-39. 62. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458:780-3. 63. Zschauer TC, Matsushima S, Altschmied J, Shao D, Sadoshima J, Haendeler J. Interacting with thioredoxin-1--disease or no disease? Antioxid Redox Signal 2013; 18:1053-62. 64. Tonissen KF, Di Trapani G. Thioredoxin system inhibitors as mediators of apoptosis for cancer therapy. Mol Nutr Food Res 2009; 53:87-103. 65. Mukherjee A, Martin SG. The thioredoxin system: a key target in tumour and endothelial cells. Br J Radiol 2008; 81:s57-s68. 66. Holmgren A, Lu J. Thioredoxin and thioredoxin reductase: current research with special reference to human disease. Biochem Biophys Res Commun 2010; 396:120–4. 67. Lillig CH, Holmgren A. Thioredoxin and related molecules-from biology to health and disease. Antioxid Redox Signal 2007; 9:25–47. 68. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. The thioredoxin–thioredoxin reductase system: Overexpression in human cancer. Anticancer Res 2003; 23:2425-33. 69. Powis G, Oblong JE, Gasdaska PY, Berggren M, Hill SR, Kirkpatrick DL. The thioredoxin/thioredoxin reductase redox system and control of cell growth. Oncol Res 1994; 6:539-44. 70. Wakasugi N, Tagaya Y, Wakasugi H, Mitsui A, Maeda M, Yodoi J, Tursz T. Adult T-cell leukemia-derived factor/thioredoxin, produced by both human T-lymphotropic virus type I- and Epstein-Barr virus-transformed lymphocytes, acts as an autocrine growth factor and synergizes with interleukin 1 and interleukin 2. Proc Natl Acad Sci U S A 1990; 87:8282-6. 71. Yamada M, Tomida A, Yoshikawa H, Taketani Y, Tsuruo T. Increased expression of thioredoxin/adult T-cell leukemia-derived factor in cisplatin-resistant human cancer cell lines. Clin Cancer Res 1996; 2:427-32. 72. Kim SJ, Miyoshi Y, Taguchi T, Tamaki Y, Nakamura H, Yodoi J, Kato K, Noguchi S. High thioredoxin expression is associated with resistance to docetaxel in primary breast cancer. Clin Cancer Res 2005; 11:8425-30. 73. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 2008; 10:R25. 74. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anat (Basel) 1995; 154:8-20. 75. Perez-Pomares JM, Munoz-Chapuli R. Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans. Anat Rec 2002; 268:343-51. 76. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133:704-15. 77. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76-83. 78. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, Savagner P, Gitelman I, Richardson A, Weinberg RA. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004; 117:927-39. 79. Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7:131-42. 80. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009; 139:871–90. 81. Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29:4741–51. 82. Capella MA, Capella LS. A light in multidrug resistance: photodynamic treatment of multidrug-resistant tumors. J Biomed Sci 2003; 10:361–6. 83. Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y. Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 2005; 26:1401-10. 84. Tseng HC, Liu WS, Tyan YS, Chiang HC, Kuo WH, Chou FP. Sensitizing effect of 3-methyladenine on radiation-induced cytotoxicity in radio-resistant HepG2 cells in vitro and in tumor xenografts. Chem Biol Interact 2011; 192:201-8. 85. Katayama M, Kawaguchi T, Berger MS, Pieper RO. DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 2007; 14:548-58. 86. Li YY, Lam SK, Mak JC, Zheng CY, Ho JC. Erlotinib-induced autophagy in epidermal growth factor receptor mutated non-small cell lung cancer. Lung Cancer 2013; 81:354-61. 87. Pan X, Zhang X, Sun H, Zhang J, Yan M, Zhang H. Autophagy inhibition promotes 5-fluorouraciinduced apoptosis by stimulating ROS formation in human non-small cell lung cancer A549 cells. PLoS One 2013; 8:e56679. 88. Eimer S, Belaud-Rotureau MA, Airiau K, Jeanneteau M, Laharanne E, Veron N, Vital A, Loiseau H, Merlio JP, Belloc F. Autophagy inhibition cooperates with erlotinib to induce glioblastoma cell death. Cancer Biol Ther 2011; 11:1017-27. 89. Coupienne I, Bontems S, Dewaele M, Rubio N, Habraken Y, Fulda S, Agostinis P, Piette J. NF-kappaB inhibition improves the sensitivity of human glioblastoma cells to 5-aminolevulinic acidbased photodynamic therapy. Biochem Pharmacol 2011; 81:606-16. 90. Traganos F, Darzynkiewicz Z. Lysosomal proton pump activity: supravital cell staining with acridine orange differentiates leukocyte subpopulations. Methods Cell Biol 1994; 41:185-94. 91. Lomonaco SL, Finniss S, Xiang C, Decarvalho A, Umansky F, Kalkanis SN, Mikkelsen T, Brodie C. The induction of autophagy by gamma-radiation contributes to the radioresistance of glioma stem cells. Int J Cancer 2009; 125:717-22. 92. Dalby KN, Tekedereli I, Lopez-Berestein G, Ozpolat B. Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer. Autophagy 2010; 6:322-9. 93. Oleinick NL, Evans HH. The photobiology of photodynamic therapy: cellular targets and mechanisms. Radiat Res 1998; 150(Suppl):S146-56. 94. Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006; 124:471-84. 95. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 2009; 138:645-59. 96. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68:3645-54. 97. Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin AY. Mouse models for cancer stem cell research. Toxicol Pathol 2010; 38:62-71. 98. Jendzelovsky R, Mikes J, Koval’ J, Soucek K, Prochazkova J, Kello M, Sackova V, Hofmanova J, Kozubik A, Fedorocko P. Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci 2009; 8:1716-23. 99. Gibson SB. A matter of balance between life and death: targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy 2010; 6:835-7. 100. Gong C, Bauvy C, Tonelli G, Yue W, Delomenie C, Nicolas V, Zhu Y, Domergue V, Marin-Esteban V, Tharinger H, et al. Beclin 1 and autophagy are required for the tumorigenicity of breast cancer stem-like/ progenitor cells. Oncogene 2013; 32:2261-72, 1-11. 101. Chen H, Luo Z, Dong L, Tan Y, Yang J, Feng G, Wu M, Li Z, Wang H. CD133/prominin-1-mediated autophagy and glucose uptake beneficial for hepatoma cell survival. PLoS One 2013; 8:e56878. 102. Wu S, Wang X, Chen J, Chen Y. Autophagy of cancer stem cells is involved with chemoresistance of colon cancer cells. Biochem Biophys Res Commun 2013; 434:898-903. 103. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16:4604-13. 104. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006; 66:7843-8. 105. Sasnauskiene A, Kadziauskas J, Vezelyte N, Jonusiene V, Kirveliene V. Damage targeted to the mitochondrial interior induces autophagy, cell cycle arrest and, only at high doses, apoptosis. Autophagy 2009; 5:743-4. 106. Dewaele M, Martinet W, Rubio N, Verfaillie T, de Witte PA, Piette J, Agostinis P. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J Cell Mol Med 2011; 15:1402-14. 107. Bauvy C, Gane P, Arico S, Codogno P, Ogier-Denis E. Autophagy delays sulindac sulfide-induced apoptosis in the human intestinal colon cancer cell line HT-29. Exp Cell Res 2001; 268:139-49. 108. Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25:1025-40. 109. Shimizu S, Takehara T, Hikita H, Kodama T, Tsunematsu H, Miyagi T, Hosui A, Ishida H, Tatsumi T, Kanto T, et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer 2012; 131:548-57. 110. Song J, Guo X, Xie X, Zhao X, Li D, Deng W, Song Y, Shen F, Wu M, Wei L. Autophagy in hypoxia protects cancer cells against apoptosis induced by nutrient deprivation through a Beclin1-dependent way in hepatocellular carcinoma. J Cell Biochem 2011; 112:3406-20. 111. Yue W, Hamai A, Tonelli G, Bauvy C, Nicolas V, Tharinger H, Codogno P, Mehrpour M. Inhibition of the autophagic flux by salinomycin in breast cancer stem-like/progenitor cells interferes with their maintenance. Autophagy 2013; 9:714-29. 112. Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E. Human Apg3p/Aut1p homologue is an authentic E2 enzyme for multiple substrates, GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12p to hApg5p. J Biol Chem 2002; 277:13739-44. 113. Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem 2007; 282:37298-302. 114. Oral O, Oz-Arslan D, Itah Z, Naghavi A, Deveci R, Karacali S, Gozuacik D. Cleavage of Atg3 protein by caspase-8 regulates autophagy during receptoractivated cell death. Apoptosis 2012; 17:810-20. 115. Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU. Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 2006; 8:1124-32. 116. Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Selfeating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8:741-52. 117. Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, et al. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005; 280:20722-9. 118. Gong C, Song E, Codogno P, Mehrpour M. The roles of BECN1 and autophagy in cancer are context dependent. Autophagy 2012; 8:1853-5. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57296 | - |
| dc.description.abstract | 最近的研究指出,癌症幹細胞 (CSCs) 是導致對目前臨床上的抗癌治療模式產生拮抗的主要來源,也包括對光動力療法(PDT)的拮抗。並更進一步影響大腸直腸癌(CRC)的復發。因此,將癌症幹細胞視為標的,發展更有效的抗癌策略,將是未來治療癌症的關鍵。在本研究中,我們利用流式細胞儀從大腸直腸癌細胞中篩選出具CD133表面抗原的癌症幹細胞,同時驗證是否具備幹細胞相關的特性。首先,我們證明在PDT治療過程中會誘發CD133細胞產生較高的細胞自噬能力,這可能是對PDT產生抗性的主因。藉由相關的藥物與shRNA抑制細胞自噬能促進CD133細胞凋亡並降低的形成colonosphere和致瘤的能力。第二,我們抑制CD133 細胞內硫氧還蛋白1(Thioredoxin 1; Trx1)的表現,提升PDT誘導的ROS產量,增強毒殺CD133細胞的能力。除此之外,我們發現Trx1的抑制降低了CD133細胞形成colonosphere能力,也使常規化療藥物更易於毒殺CD133細胞。第三,我們採用EMT (Epithelial–mesenchymal transition)的特性去增加癌症細胞內CD133 細胞所占比例,並建立癌症幹細胞的動物模式。經由EMT過程產生的癌細胞會更有效的誘發腫瘤生成。綜合上述結果,期盼我們的發現有助於發展有效針對癌症幹細胞的新型療法,達到癌症治癒的目的。 | zh_TW |
| dc.description.abstract | Recent studies have indicated that cancer stem-like cells (CSCs) exhibit a high resistance to current therapeutic strategies, including photodynamic therapy (PDT), leading to the recurrence and progression of colorectal cancer (CRC). Therefore, more effective anticancer strategies targeting CSCs will be critical for developing a cure for cancer. In this study, CSCs were isolated from colorectal cancer cells using CD133 expression and analyzed it’s stemness-associated properties. We demonstrated first that autophagy may be the main cause of resistance to PpIX-mediated PDT in CD133+ cells. The inhibition of PDT-induced autophagy by pharmacological inhibitors and silencing of autophagy-related gene substantially triggered apoptosis of CD133+ cells and decreased the ability of colonosphere formation in vitro and tumorigenicity in vivo. Second, we elevated ROS levels to improve the cytotoxicity of PDT to CSCs by inhibition of thioredoxin 1 (Trx1). In addition, we found that silencing of Trx1 reduced the ability of sphere formation of CD133+ cells and sensitized CD133+ cells to conventional chemotherapy. Third, we increased the percentage of CD133+ cells in cancer population and established an in vivo CSCs model by inducing EMT in colorectal cancer cells. Cells underwent an EMT are more efficient in tumor-initiating potential and increase stemness-associated properties. Based on the results, these findings would aid in the development of novel therapeutic approaches for CSC treatment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:40:44Z (GMT). No. of bitstreams: 1 ntu-103-D95548004-1.pdf: 9621792 bytes, checksum: 1207d4be0241c44910ebe901d9521e73 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員會審定書……………………………………………………………………I
誌謝……………………………………………………………………………………II 中文摘要……………………………………………………………………………III Abstract………………………………………………………………………………IV Chapter 1. Introduction……………………………………………………………1 1.1 Colorectal cancer stem-like cells……………………………………………1 1.2 The resistance to photodynamic therapy in CSCs…………………2 1.3 The role played by autophagy in cytotoxicity of PDT………………………4 1.4 The functions of thioredoxin…………………………………………………6 1.5 The establishment of stable colorectal CSCs and their animal models……………8 Chapter 2. Materials and Methods……………………………………………11 Chapter 3. Results……………………………………………………………………21 Part 1. The resistance to photodynamic therapy in CSCs……………………21 3.1.1 CD133+ cells of colorectal cancer exhibit the characteristics of CSCs……………………………………………………………………21 3.1.2 CD133+ cells take up more protoporphyrin IX………………22 3.1.3 CD133+ cells of colorectal cancer exhibit the resistance to PDT……………………………………………………………………23 3.1.4 CD133+ cells of colorectal cancer can inhibit generation of ROS produced by PDT…………………………………………………………24 Part 2. Autophagy promotes resistance to photodynamic therapy-induced apoptosis in colorectal cancer stem-like cells…………………………………26 3.2.1 PDT induces autophagy in CD133+ cells…………………………………26 3.2.2 PDT-induced autophagy protects CD133+ cells from PDT-induced cell death……………………………………………………………………27 3.2.3 Silencing of autophagy-related genes sensitized CD133+ cells to PDT…………………………………………………………………28 3.2.4 Inhibition of PDT-induced autophagy enhances the apoptotic effect of PDT in CD133+ cells…………………………………………30 3.2.5 Blocking autophagy enhances the antitumorigenicity of PDT in a xenograft mode……………………………………………………………31 3.2.6 Blocking the Akt-mTOR pathway through the application of PDT also promoted the activation of autophagy in CSCs………………………33 Part 3. Thioredoxin 1 plays a critical role to sustain CSCs properties………34 3.3.1 Inhibition of Trx1 enhances the cytotoxicity of PDT in CD133+ cells………………………………………………………………………34 3.3.2 Trx1 contributes to the stemness-associated properties in CD133+ cells………………………………………………………………………35 Part 4. Elevation of tumorigenicity in colorectal cancer cells and establishment of CSCs animal model by EMT…………………………………………………37 3.4.1 An increase in the percentage of CD133+ cells by genetic silencing of E-cadherin……………………37 3.4.2 Knockdown of E-cadherin enhances the tumor-initiating potential of colorectal cancer cells in a xenograft model………38 Chapter 4. Discussion………………………………………………………………40 References……………………………………………………………………………46 Figure legends………………………………………………………………………64 Figures………………………………………………………………………………80 APPENIX…………………………………………………………………………107 Publication list………………………………………………………………………108 | |
| dc.language.iso | en | |
| dc.subject | 細胞自噬 | zh_TW |
| dc.subject | CD133 | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 光動力療法 | zh_TW |
| dc.subject | 癌症幹細胞 | zh_TW |
| dc.subject | EMT | zh_TW |
| dc.subject | 硫氧還蛋白1 | zh_TW |
| dc.subject | Colorectal cancer (CRC) | en |
| dc.subject | EMT | en |
| dc.subject | Autophagy | en |
| dc.subject | CD133 | en |
| dc.subject | Thioredoxin 1 (Trx1) | en |
| dc.subject | Photodynamic therapy (PDT) | en |
| dc.subject | Cancer stem-like cells (CSCs) | en |
| dc.title | 大腸直腸癌幹細胞特性與治療策略之探討 | zh_TW |
| dc.title | The investigation on the characteristics of colorectal cancer stem-like cells and therapeutic strategies | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 婁培人,李章銘,洪士杰,蔡坤志,姜正愷 | |
| dc.subject.keyword | 癌症幹細胞,光動力療法,大腸直腸癌,CD133,細胞自噬,硫氧還蛋白1,EMT, | zh_TW |
| dc.subject.keyword | Cancer stem-like cells (CSCs),Photodynamic therapy (PDT),Colorectal cancer (CRC),CD133,Autophagy,Thioredoxin 1 (Trx1),EMT, | en |
| dc.relation.page | 109 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 9.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
