Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹(Gen-Shuh Wang)
dc.contributor.authorChia-Jung Changen
dc.contributor.author張珈蓉zh_TW
dc.date.accessioned2021-06-16T06:39:58Z-
dc.date.available2015-10-20
dc.date.copyright2014-10-20
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citationAlarcon-Herrera, M. T., Bewtra, J. K., & Biswas, N. (1994). Seasonal variations in humic substances and their reduction through water treatment processes. Canadian Journal of Civil Engineering, 21(2), 173-179.
Beniston, M. (2004). The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters, 31(2).
Bose, P., & Reckhow, D. A. (1998). Adsorption of natural organic matter on preformed aluminum hydroxide flocs. Journal of Environmental Engineering, 124(9), 803-811.
Castellon, C. M. (2008). Disinfection byproduct (DBP) precursors in Central MA Watershed and DBP occurence in MA Water Supplies. University of Massachusetts.
Chang, H. H. (2011). Occurrence of disinfection by-products (DBPs) in finished water and formation of emerging DBPs from polluted source water in Taiwan. Graduate Institute of Environmental Health, College of Public Health, National Taiwan University. Taipei, Taiwan.
Christman, R. F., Kronberg, K., Singh, R., Ball, L. M., & Johnson, J. D. (1990). Identification of mutagenic by-products from aquatic humic chlorination. Paper presented at the AWWA Research Foundation and AWWA, Denver.
Clark, J. M., Lane, S. N., Chapman, P. J., & Adamson, J. K. (2008). Link between DOC in near surface peat and stream water in an upland catchment. Science of The Total Environment, 404(2-3), 308-315.
Croue, J. P., F.Debroux, J., Aiken, G., Leenheer, J. A., & Amy, G. L. (1999). Natural organic matter: structural and reactive properties. Paper presented at the American Water Works Assn, Denver.
Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225-1233.
Domino, M. M., Pepich, B. V., Munch, D. J., Fair, P. S., & Xie, Y. (2003). Determination of haloacetic acids and dalapon in drinking water by liquid-liquid microextraction, derivatization, and gas chromatography with electron capture detection - EPA Method 552.3. Cincinnati, OH, USA: Technical Support Center, Office of Ground Water and Drinking Water, US Environmental Protection Agency.
Ducharne, A., Baubion, C., Beaudoin, N., Benoit, M., Billen, G., Brisson, N., et al. (2007). Long term prospective of the Seine River system: Confronting climatic and direct anthropogenic changes. Science of The Total Environment, 375(1-3), 292-311.
Evans, C., Monteith, D., & Cooper, D. (2005). Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environmental Pollution, 137(1), 55-71.
Hejzlar, J., Dubrovsky, M., Buchtele, J., & Růžička, M. (2003). The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River, South Bohemia). Science of The Total Environment, 310(1-3), 143-152.
Hrdinka, T., Novicky, O., Hanslik, E., & Rieder, M. (2012). Possible impacts of floods and droughts on water quality. Journal of Hydro-environment Research, 6(2), 145-150.
Hunter, P. R. (2003). Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94, 37-46.
Johnk, K. D., Huisman, J. E. F., Sharples, J., Sommeijer, B. E. N., Visser, P. M., & Stroom, J. M. (2008). Summer heatwaves promote blooms of harmful cyanobacteria. Global Change Biology, 14(3), 495-512.
Komatsu, E., Fukushima, T., & Harasawa, H. (2007). A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling, 209(2-4), 351-366.
Mimikou, M. A., Baltas, E., Varanou, E., & Pantazis, K. (2000). Regional impacts of climate change on water resources quantity and quality indicators. Journal of Hydrology, 234, 95-109.
Monteith, D. T., Stoddard, J. L., Evans, C. D., de Wit, H. A., Forsius, M., Hogasen, T., et al. (2007). Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature, 450(7169), 537-540.
Munch, D. J., & Hautman, D. P. (1995). Determination of chlorination disinfection byproducts, chlorinated solvents, and halogenated pesticides/herbicides in drinking water by liquid-liquid extraction and gas chromatography with electron capture detection - Method 551.1. Cincinnati, Ohio: Environmental Protection Agency.
Nikolaou, A. D., Golfinopoulos, S. K., Arhonditsis, G. B., Kolovoyiannis, V., & Lekkas, T. D. (2004). Modeling the formation of chlorination by-products in river waters with different quality. Chemosphere, 55(3), 409-420.
Prathumratana, L., Sthiannopkao, S., & Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International, 34(6), 860-866.
Randtke, S. J., & Jepsen, C. P. (1981). Chemical pre-treatment for activated carbon adsorption. American Water Works Association, 73, 411-420.
Singer, P. C. (1999). Humic substances as precursors for potentially harmful disinfection by-products. Water Science and Technology, 40(9), 25-30.
Tang, R., Clark, J. M., Bond, T., Graham, N., Hughes, D., & Freeman, C. (2013). Assessment of potential climate change impacts on peatland dissolved organic carbon release and drinking water treatment from laboratory experiments. Environmental Pollution, 173, 270-277.
Teksoy, A., Alkan, U., & Başkaya, H. S. (2008). Influence of the treatment process combinations on the formation of THM species in water. Separation and Purification Technology, 61(3), 447-454.
Uyak, V., & Toroz, I. (2007). Disinfection by-product precursors reduction by various coagulation techniques in Istanbul water supplies. Journal of Hazardous Materials, 141(1), 320-328.
van Leeuwen, J., Daly, R., & Holmes, M. (2005). Modeling the treatment of drinking water to maximize dissolved organic matter removal and minimize disinfection by-product formation. Desalination, 176(1–3), 81-89.
van Vliet, M. T. H., & Zwolsman, J. J. G. (2008). Impact of summer droughts on the water quality of the Meuse river. Journal of Hydrology, 353(1-2), 1-17.
Wang, D. J., Lin, J. H., Sun, R. J., Xia, L. Z., & Lian, G. (2003). Optimal nitrogen rate for a high productive rice-wheat system and its impact on the groundwater in the Taihu lake area. Acta Pedologica Sinica, 40(3), 426-432.
Wit, H. A. D., Mulder, J., Hindar, A., & hole, L. (2007). Long-Term Increase in Dissolved Organic Carbon in Streamwaters in Norway Is Response to Reduced Acid Deposition. Environment science and technology, 41, 7706-7713.
Worrall, F., & Burt, T. P. (2007). Trends in DOC concentration in Great Britain. Journal of Hydrology, 346(3-4), 81-92.
Zhang, X., Echigo, S., Lei, H., Smith, M. E., Minear, R. A., & Talley, J. W. (2005). Effects of temperature and chemical addition on the formation of bromoorganic DBPs during ozonation. Water Research, 39(2–3), 423-435.
Zwolsman, J. J. G., & van Bokhoven, A. J. (2007). Impact of summer droughts on water quality of the Rhine River - a preview of climate change? Water Science & Technology, 56(4), 45.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57273-
dc.description.abstract水資源是很容易受到氣候變遷影響的自然資源。極端氣候事件(例如:洪水與乾旱)的發生頻率與強度的增加,以及環境溫度的上升都被認為是氣候變遷所造成的結果。這些極端氣候事件可能會對表面水體水質以及下游的飲用水處理造成威脅。
近幾十年來,已經有許多研究發現水中溶解性有機物質(Dissolved organic matter, DOM)的濃度有上升的趨勢,許多氣候相關因子被認為是導致這些DOM濃度變化的可能原因,其中又以溫度以及降雨型態的改變尤其受到關注。
以往研究指出DOM是消毒副產物(Disinfection by-products, DBPs)的重要前趨物質,在飲用水處理的過程中,這些濃度增加的DOM與不同的消毒劑反應之後,可能會導致不同毒性及致癌性的DBPs濃度上升。本篇研究的目的在了解在不同的氣候模擬條件下,DOM與DBPs生成的特性與濃度變化。實驗室模擬的氣候條件包含溫度、乾旱、降雨強度、海平面上升以及酸沉降。在實驗室模擬結束後,也進行消毒副產物生成潛能 (DBP formation potentials, DBPFPs)實驗來了解氣候變遷對於水質與DBPs生成的影響。
經過十次不同模擬試驗之後,本研究結果顯示總溶解性有機碳 (Dissolved organic carbon, DOC) 與含碳的消毒副產物 (C-DBPFP) 的濃度會隨著溫度的增加而增加。在評估海平面上升對於水質的影響、也就是溴離子存在於土壤有機質回溶的過程時,含溴的三鹵甲烷 (Br-THMFP) 濃度也會增加。此外,酸沉降在不同的氣候條件下對於水質會有正反兩面的影響。土壤基質以及土地利用的改變也會影響DOM的濃度以及之後DBPs的生成。
降雨模擬的結果顯示極端降雨會在降雨初期造成水質的惡化。大量的DOM會從土壤中被淋洗出來,導致DBPs產生一個高峰值。若極端降雨發生在一個長期乾旱之後,伴隨著乾旱回溶的循環效應 (drought-rewetting cycle effects),水質惡化的情形可能會更加嚴重。
zh_TW
dc.description.abstractWater resource is one of the essential natural resources which are vulnerable to climate change. Increased frequency and severity of extreme weather events (i.e. floods and droughts) combined with elevated temperature are considered as the consequences of climate change. These extreme weather events will cause potential threats to the surface water quality and the downstream drinking water productions.
Many studies have found that the concentrations of dissolved organic matter (DOM) have increased in surface waters over the past decades. Studies also indicated that DOM is an important precursor of various disinfection by-products (DBPs). Several climate-related factors are considered as the potential drivers of DOM changes, especially temperatures and rainfall patterns. The rising DOM, after reactions with various disinfectants, may results in the increasing concentrations of DBPs with different toxicities or carcinogenesis during water treatment processes.
The objective of this study is to characterize the DOM and DBPs formation under different simulated weather conditions. The effects of temperature, drought, rainfall intensity, sea level rising, and acid deposition were considered in the laboratory simulated systems. After simulated treatments, the DBP formation potentials (DBPFPs) were measured to assess the impacts of climate change on DBPs formation and drinking water quality.
After ten various laboratory simulations, it was found that there is an increasing trend on dissolved organic carbon (DOC) and C-DBPFP levels with increasing temperature and dry scenarios. Br-THMFP levels were increased when bromide was presented during rewetting processes that represents the impact of sea level rise on drinking water quality. As a comparison, when bromide was presented before chlorination, only the proportion of Br-DBPFP increased. Besides, acid deposition had a two-side effect under different weather conditions. Also, the matrix of soil sources and change of the land uses may influence the DOM concentrations and the following DBPs formation.
The results of the rainfall simulations suggested that the deterioration of the water quality was observed in the beginning period of extreme rainfalls. Abundant DOM was flushed out from the soil, and led to a high peak of DBPFPs. If the rainfall was happened after a long drought, accompanying with the drought-rewetting cycle effects, the situation would become much more severe.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:39:58Z (GMT). No. of bitstreams: 1
ntu-103-R01844004-1.pdf: 3812367 bytes, checksum: 90807e660797fc5ff2f5a8bccdb156b7 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Tables viii
List of Figures ix
Chapter I Introduction 1
1. Background 1
2. Objectives of study 9
Chapter II Literature Review 10
1. The potential impacts of temperature on the water quality 10
2. The potential impacts of variation of precipitation patterns on the water quality 12
3. The potential impacts of acid deposition and sea level rise on the water quality 13
4. The potential impacts of other factors on the water quality 14
5. The potential drivers of change in DBPs formation 14
Chapter III Materials and Methods 20
1. Soil sampling 20
2. Laboratory simulation systems 24
3. Rainfall simulation 26
3.1 Rainfall simulator 26
3.2 Rainfall intensity 27
3.3 Soil samples 27
4. Heavy rain sampling 29
5. DOM and DBPs analysis 29
5.1 Basic water quality parameters and DOM 29
5.2 Disinfection by-products formation potentials (DBPFPs) analysis 32
5.3 Reagents 36
5.4 Instruments and apparatus 37
Chapter IV Results and Discussions 39
1. Effects of temperature 39
2. Effects of sea level rise 43
3. Effects of acid deposition and wet/dry scenario 45
4. Soil samples from reservoirs – Pinglin, Kinmen and Keelung 48
5. Effects of different land uses along the Jin-Sha Stream in Kinmen 50
6. Results for soil samples from Soil and Water Conservation Outdoor Classrooms 52
7. Results from rainfall simulations 53
8. Results of on-site heavy rain sampling 58
Chapter V Conclusions 59
Reference 61
Appendix 64
dc.language.isoen
dc.title以實驗室模擬氣候變遷對水質及消毒副產物生成影響之研究zh_TW
dc.titleThe potential effects of climate change on water quality and disinfection by-products (DBPs) formation based on laboratory simulationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林財富(Tsair-Fuh Lin),陳孝行(Shiao-Shing Chen)
dc.subject.keyword氣候變遷,實驗室模擬,降雨模擬,水質,消毒副產物,zh_TW
dc.subject.keywordClimate change,Laboratory simulation,Rainfall simulation,Water quality,Disinfection by-products,en
dc.relation.page80
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved