Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57270
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor江金倉
dc.contributor.authorWan-Ting Tienen
dc.contributor.author田婉廷zh_TW
dc.date.accessioned2021-06-16T06:39:52Z-
dc.date.available2014-08-01
dc.date.copyright2014-08-01
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citationBerkson, J., & Gage, R. P. (1952). Survival curve for cancer patients following treat-ment. Journal of the American Statistical Association, 47(259), 501-515.
Boag, J. W. (1949). Maximum likelihood estimates of the proportion of patients cured by cancer therapy. Journal of the Royal Statistical Society. Series B (Methodological), 11(1), 15-53.
Chen, K., Jin, Z., & Ying, Z. (2002). Semiparametric analysis of transformation models with censored data. Biometrika, 89(3), 659-668.
Cheng, S. C., Wei, L. J., & Ying, Z. (1995). Analysis of transformation models with censored data. Biometrika, 82(4), 835-845.
Chiang, C. T., & Huang, S. Y. (2009). Estimation for the optimal combination of mark-ers without modeling the censoring distribution. Biometrics, 65(1), 152-158.
Chiang, C. T., & Hung, H. (2010). Non‐parametric estimation for time-dependent AUC. Journal of Statistical Planning and Inference, 140(5), 1162-1174.
Chiang, C. T., Wang, S. H., & Huang, M. Y. (2013). Versatile Estimation in Censored Single-Index Hazards Regression.
Choi, S., Huang, X., & Chen, Y. H. (2013). A class of semiparametric transformation models for survival data with a cured proportion. Lifetime data analysis, 1-18.
Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics, 1041-1046.
Fine, J. P. (1999). Analysing competing risks data with transformation models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(4), 817-830.
Gu, Y., Sinha, D., & Banerjee, S. (2011). Analysis of cure rate survival data under pro-portional odds model. Lifetime data analysis, 17(1), 123-134.
Heagerty, P. J., Lumley, T., & Pepe, M. S. (2000). Time‐dependent ROC curves for censored survival data and a diagnostic marker. Biometrics, 56(2), 337-344.
Huang, J., & Rossini, A. J. (1997). Sieve estimation for the proportional-odds fail-ure-time regression model with interval censoring. Journal of the American Statis-tical Association, 92(439), 960-967.
Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. The Annals of Mathematical Statistics, 887-906.
Kuk, A. Y., & Chen, C. H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika, 79(3), 531-541
Lange, K., Hunter, D. R., & Yang, I. (2000). Optimization transfer using surrogate ob-jective functions. Journal of computational and graphical statistics, 9(1), 1-20.
Laska, E. M., & Meisner, M. J. (1992). Nonparametric estimation and testing in a cure model. Biometrics, 1223-1234.
Lee, K. W., Hill, J. S., Walley, K. R., & Frohlich, J. J. (2006). Relative value of multiple plasma biomarkers as risk factors for coronary artery disease and death in an angiography cohort. Canadian Medical Association Journal, 174(4), 461-466.
Lu, W., & Ying, Z. (2004). On semiparametric transformation cure models. Biometrika, 91(2), 331-343.
Mao, M., & Wang, J. L. (2010). Semiparametric efficient estimation for a class of gen-eralized proportional odds cure models. Journal of the American Statistical Associ-ation, 105(489), 302-311.
McIntosh, M. W., & Pepe, M. S. (2002). Combining several screening tests: optimality of the risk score. Biometrics, 58(3), 657-664.
Murphy, S. A., Rossini, A. J., & van der Vaart, A. W. (1997). Maximum likelihood es-timation in the proportional odds model. Journal of the American Statistical Asso-ciation, 92(439), 968-976.
Peng, Y., & Dear, K. B. (2000). A nonparametric mixture model for cure rate estimation. Biometrics, 56(1), 237-243.
Sy, J. P., & Taylor, J. M. (2000). Estimation in a Cox proportional hazards cure model. Biometrics, 56(1), 227-236.
Taylor, J. M. (1995). Semi-parametric estimation in failure time mixture models. Bio-metrics, 899-907.
Withers, H. R., Peters, L. J., Taylor, J. M., Owen, J. B., Morrison, W. H., Schultheiss, T. E., ... & Hanks, G. E. (1995). Local control of carcinoma of the tonsil by radiation therapy: an analysis of patterns of fractionation in nine institutions. International Journal of Radiation Oncology* Biology* Physics, 33(3), 549-562.
Xu, J., & Peng, Y. (2014). Nonparametric cure rate estimation with covariates. Cana-dian Journal of Statistics, 42(1), 1-17.
Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of “permanent employ-ment” in Japan. Journal of the American Statistical Association, 87(418), 284-292.
Zeng, D., & Lin, D. Y. (2007). Maximum likelihood estimation in semiparametric re-gression models with censored data. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 507-564.
Zeng, D., Yin, G., & Ibrahim, J. G. (2006). Semiparametric transformation models for survival data with a cure fraction. Journal of the American Statistical Association, 101(474), 670-684.
Zheng, Y., Cai, T., & Feng, Z. (2006). Application of the Time‐Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers. Biometrics, 62(1), 279-287
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57270-
dc.description.abstract受惠於科技與醫學的進步,針對許多疾病已研發出能治癒病人的方法,譬如癌細胞經放射線治療後被完全消滅,康復的病患將不死於癌症,故有多數右設限資料記錄於觀測結束的時間點,由Kaplan-Meier存活函數的估計可觀察到長尾的平穩狀態,這些資料的特色是不論觀測時間多長,存活曲線永不趨近零,我們稱之為「治癒存活資料」,因此,藉由生物指標來判別病人治癒與否便成為一重要議題,這涉及到分類和真實狀況之間的關聯性。本論文目標主要將傳統真陽性率、偽陽性率與ROC曲線下面積的應用推廣到治癒存活資料上,並分析一筆心血管疾病的研究資料。zh_TW
dc.description.abstractBenefited from the advanced technology and medical science, more and more effective treatments for different kinds of incurable diseases have been invented. For instance, patients will not die of cancer if the radiation kills all cancer cells, so there are plenty of right-censored data at the end of the observation period. The Kaplan-Meier type estimator of survival curve shows a long and stable plateau in the tail. A characteristic of such survival data is that the survival function does not converge to zero as time goes to infinity. It is called 'cure survival data'. As a result, using biomarkers to discriminate uncured patients from all subjects becomes an important issue. It is related to the connection between classifications and the true status. Our primary research aim is to extend the application of true positive rate (TPR), false positive rate (FPR), and the area under receiver operating characteristic (ROC) curve (AUC) from classical survival data to cure survival data. And we will analyze the data of an angiography cohort study.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:39:52Z (GMT). No. of bitstreams: 1
ntu-103-R01221025-1.pdf: 1714686 bytes, checksum: 4c67e5b38f536aaeed8faca1a62674d8 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures v
List of Tables vii
1 Introduction 1
2 Model and Estimation 5
2.1 Model 5
2.2 Estimation of the Survival Function 6
2.3 Estimation of ROC Curve and AUC 9
3 Monte Carlo Simulations 13
3.1 Simulation I – Univariate Marker 13
3.2 Simulation II – Multivariate Markers 20
4 Application to an Angiography Cohort 26
5 Discussion 31
Bibliography 32
dc.language.isoen
dc.subject存活分析zh_TW
dc.subjectROC曲線下面積zh_TW
dc.subject偽陽性率zh_TW
dc.subject真陽性率zh_TW
dc.subject生物指標zh_TW
dc.subject治癒存活資料zh_TW
dc.subjectbiomarkersen
dc.subjectcure survival dataen
dc.subjectsurvival analysisen
dc.subjectthe area under ROC curveen
dc.subjectfalse positive rateen
dc.subjecttrue positive rateen
dc.title治癒存活資料的ROC曲線分析zh_TW
dc.titleReceiver Operating Characteristic Curve Analysis for Cure Survival Dataen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周若珍,張子貴
dc.subject.keyword存活分析,治癒存活資料,生物指標,真陽性率,偽陽性率,ROC曲線下面積,zh_TW
dc.subject.keywordsurvival analysis,cure survival data,biomarkers,true positive rate,false positive rate,the area under ROC curve,en
dc.relation.page34
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved