Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57262
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳敏璋
dc.contributor.authorTung-Yi Kaoen
dc.contributor.author高同儀zh_TW
dc.date.accessioned2021-06-16T06:39:37Z-
dc.date.available2019-08-13
dc.date.copyright2014-08-13
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation[1] C. Zhao, C. Z. Zhao, M. Werner, S. Taylor, and P. R. Chalker, “Advanced CMOS Gate Stack: Present Research Progress,” ISRN Nanotechnol., vol. 2012, pp. 1–35, 2012.
[2] D. Edenfeld, A. B. Kahng, M. Rodgers, and Y. Zorian, “2003 technology roadmap for semiconductors,” Computer, vol. 37, no. 1, pp. 47–56, 2004.
[3] S. H. Lo, D. A. Buchanan, Y. Taur, and W. I. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET’s,” Electron Device Lett. IEEE, vol. 18, no. 5, pp. 209–211, 1997.
[4] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe, and M. M. Heyns, “Determination of tunnelling parameters in ultra-thin oxide layer poly-Si/SiO2/Si structures,” Solid-State Electron., vol. 38, no. 8, pp. 1465–1471, Aug. 1995.
[5] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., vol. 69, no. 2, pp. 327–396, Feb. 2006.
[6] J. H. Choi, Y. Mao, and J. P. Chang, “Development of hafnium based high-k materials—A review,” Mater. Sci. Eng. R Rep., vol. 72, no. 6, pp. 97–136, Jul. 2011.
[7] A. Mukhopadhyay, J. Sanz, and C. Musgrave, “First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces,” Phys. Rev. B, vol. 73, no. 11, Mar. 2006.
[8] P. D. Kirsch, C. S. Kang, J. Lozano, J. C. Lee, and J. G. Ekerdt, “Electrical and spectroscopic comparison of HfO[sub 2]/Si interfaces on nitrided and un-nitrided Si(100),” J. Appl. Phys., vol. 91, no. 7, p. 4353, 2002.
[9] S. Sayan, S. Aravamudhan, B. W. Busch, W. H. Schulte, F. Cosandey, G. D. Wilk, T. Gustafsson, and E. Garfunkel, “Chemical vapor deposition of HfO[sub 2] films on Si(100),” J. Vac. Sci. Technol. Vac. Surf. Films, vol. 20, no. 2, p. 507, 2002.
[10] Y. Hoshino and Y. Kido, “Dynamic response of target electrons on elastic scattering cross sections for heavy-ion impact on a high-Z atom,” Phys. Rev. A, vol. 68, no. 1, Jul. 2003.
[11] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges,” J. Vac. Sci. Technol. Vac. Surf. Films, vol. 29, no. 5, p. 050801, 2011.
[12] L. Niinisto, M. Nieminen, J. Paivasaari, J. Niinisto, M. Putkonen, and M. Nieminen, “Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials,” Phys. Status Solidi A, vol. 201, no. 7, pp. 1443–1452, May 2004.
[13] R. L. Puurunen, “Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process,” J. Appl. Phys., vol. 97, no. 12, p. 121301, 2005.
[14] S. M. George, “Atomic Layer Deposition: An Overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, Jan. 2010.
[15] A. W. Ott, J. W. Klaus, J. M. Johnson, and S. M. George, “Al< sub> 3</sub> O< sub> 3</sub> thin film growth on Si (100) using binary reaction sequence chemistry,” Thin Solid Films, vol. 292, no. 1, pp. 135–144, 1997.
[16] S. B. S. Heil, J. L. van Hemmen, C. J. Hodson, N. Singh, J. H. Klootwijk, F. Roozeboom, M. C. M. van de Sanden, and W. M. M. Kessels, “Deposition of TiN and HfO[sub 2] in a commercial 200 mm remote plasma atomic layer deposition reactor,” J. Vac. Sci. Technol. Vac. Surf. Films, vol. 25, no. 5, p. 1357, 2007.
[17] H. Kim, “Characteristics and applications of plasma enhanced-atomic layer deposition,” Thin Solid Films, vol. 519, no. 20, pp. 6639–6644, Aug. 2011.
[18] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, no. 10, p. 5243, 2001.
[19] D. M. Hausmann, E. Kim, J. Becker, and R. G. Gordon, “Atomic Layer Deposition of Hafnium and Zirconium Oxides Using Metal Amide Precursors,” Chem. Mater., vol. 14, no. 10, pp. 4350–4358, Oct. 2002.
[20] J. L. van Hemmen, S. B. S. Heil, J. H. Klootwijk, F. Roozeboom, C. J. Hodson, M. C. M. van de Sanden, and W. M. M. Kessels, “Plasma and Thermal ALD of Al[sub 2]O[sub 3] in a Commercial 200 mm ALD Reactor,” J. Electrochem. Soc., vol. 154, no. 7, p. G165, 2007.
[21] S. E. Potts, W. Keuning, E. Langereis, G. Dingemans, M. C. M. van de Sanden, and W. M. M. Kessels, “Low Temperature Plasma-Enhanced Atomic Layer Deposition of Metal Oxide Thin Films,” J. Electrochem. Soc., vol. 157, no. 7, p. P66, 2010.
[22] J. W. Lim and S. J. Yun, “Electrical Properties of Alumina Films by Plasma-Enhanced Atomic Layer Deposition,” Electrochem. Solid-State Lett., vol. 7, no. 8, p. F45, 2004.
[23] M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, A. Shanware, and L. Colombo, “Application of HfSiON as a gate dielectric material,” Appl. Phys. Lett., vol. 80, no. 17, p. 3183, 2002.
[24] G. He, L. D. Zhang, G. H. Li, M. Liu, L. Q. Zhu, S. S. Pan, and Q. Fang, “Spectroscopic ellipsometry characterization of nitrogen-incorporated HfO[sub 2] gate dielectrics grown by radio-frequency reactive sputtering,” Appl. Phys. Lett., vol. 86, no. 23, p. 232901, 2005.
[25] H.-J. Cho, C. S. Kang, K. Onishi, S. Gopalan, R. Nieh, R. Choi, S. Krishnan, and J. C. Lee, “Structural and electrical properties of HfO 2 with top nitrogen incorporated layer,” Electron Device Lett. IEEE, vol. 23, no. 5, pp. 249–251, 2002.
[26] C. S. Kang, H.-J. Cho, K. Onishi, R. Nieh, R. Choi, S. Gopalan, S. Krishnan, J. H. Han, and J. C. Lee, “Bonding states and electrical properties of ultrathin HfO[sub x]N[sub y] gate dielectrics,” Appl. Phys. Lett., vol. 81, no. 14, p. 2593, 2002.
[27] M. A. Quevedo-Lopez, M. R. Visokay, J. J. Chambers, M. J. Bevan, A. LiFatou, L. Colombo, M. J. Kim, B. E. Gnade, and R. M. Wallace, “Dopant penetration studies through Hf silicate,” J. Appl. Phys., vol. 97, no. 4, p. 043508, 2005.
[28] J. F. Kang, H. Y. Yu, C. Ren, M.-F. Li, D. S. H. Chan, H. Hu, H. F. Lim, W. D. Wang, D. Gui, and D.-L. Kwong, “Thermal stability of nitrogen incorporated in HfN[sub x]O[sub y] gate dielectrics prepared by reactive sputtering,” Appl. Phys. Lett., vol. 84, no. 9, p. 1588, 2004.
[29] J. H. Kim, T. J. Park, M. Cho, J. H. Jang, M. Seo, K. D. Na, C. S. Hwang, and J. Y. Won, “Reduced Electrical Defects and Improved Reliability of Atomic-Layer-Deposited HfO[sub 2] Dielectric Films by In Situ NH[sub 3] Injection,” J. Electrochem. Soc., vol. 156, no. 5, p. G48, 2009.
[30] C. Lee, J. Choi, M. Cho, J. Park, C. S. Hwang, H. J. Kim, and J. Jeong, “Nitrogen incorporation engineering and electrical properties of high-k gate dielectric (HfO[sub 2] and Al[sub 2]O[sub 3]) films on Si (100) substrate,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 22, no. 4, p. 1838, 2004.
[31] M. S. Akbar, N. Moumen, J. Barnett, J. Sim, and J. C. Lee, “Effect of NH[sub 3] surface nitridation temperature on mobility of ultrathin atomic layer deposited HfO[sub 2],” Appl. Phys. Lett., vol. 86, no. 3, p. 032906, 2005.
[32] K.-S. Park, K.-H. Baek, D. P. Kim, J.-C. Woo, L.-M. Do, and K.-S. No, “Effects of N2 and NH3 remote plasma nitridation on the structural and electrical characteristics of the HfO2 gate dielectrics,” Appl. Surf. Sci., vol. 257, no. 4, pp. 1347–1350, Dec. 2010.
[33] N.-J. Seong, W.-J. Lee, and S.-G. Yoon, “Structural and electrical characterizations of ultrathin HfO[sub 2] gate dielectrics treated by nitrogen-plasma atmosphere,” J. Vac. Sci. Technol. B Microelectron. Nanometer Struct., vol. 24, no. 1, p. 312, 2006.
[34] R. Puthenkovilakam, M. Sawkar, and J. P. Chang, “Electrical characteristics of postdeposition annealed HfO[sub 2] on silicon,” Appl. Phys. Lett., vol. 86, no. 20, p. 202902, 2005.
[35] B. Yu, L. Chang, S. Ahmed, H. Wang, S. Bell, C.-Y. Yang, C. Tabery, C. Ho, Q. Xiang, T.-J. King, and others, “FinFET scaling to 10 nm gate length,” in Electron Devices Meeting, 2002. IEDM’02. International, 2002, pp. 251–254.
[36] K. Kim, K. K. Das, R. V. Joshi, and C. T. Chuang, “Leakage Power Analysis of 25-nm Double-Gate CMOS Devices and Circuits,” IEEE Trans. Electron Devices, vol. 52, no. 5, pp. 980–986, May 2005.
[37] J. Kavalieros, B. Doyle, S. Datta, G. Dewey, M. Doczy, B. Jin, D. Lionberger, M. Metz, W. Rachmady, M. Radosavljevic, and others, “Tri-gate transistor architecture with high-k gate dielectrics, metal gates and strain engineering,” in VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, 2006, pp. 50–51.
[38] J. Kedzierski, Meikei Ieong, E. Nowak, T. S. Kanarsky, Ying Zhang, R. Roy, D. Boyd, D. Fried, and H.-S. P. Wong, “Extension and source/drain design for high-performance finFET devices,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 952–958, Apr. 2003.
[39] M. Leskela and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,” Thin Solid Films, vol. 409, no. 1, pp. 138–146, 2002.
[40] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, no. 11, pp. 1510–1512, 1993.
[41] T. S. Böscke, P. Y. Hung, P. D. Kirsch, M. A. Quevedo-Lopez, and R. Ramírez-Bon, “Increasing permittivity in HfZrO thin films by surface manipulation,” Appl. Phys. Lett., vol. 95, no. 5, p. 052904, 2009.
[42] R. I. Hegde, D. H. Triyoso, S. B. Samavedam, and B. E. White, “Hafnium zirconate gate dielectric for advanced gate stack applications,” J. Appl. Phys., vol. 101, no. 7, p. 074113, 2007.
[43] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE Trans. Device Mater. Reliab., vol. 5, no. 1, pp. 5–19, Mar. 2005.
[44] S. Zafar, A. Kumar, E. Gusev, and E. Cartier, “Threshold voltage instabilities in high-/spl kappa/ gate dielectric stacks,” IEEE Trans. Device Mater. Reliab., vol. 5, no. 1, pp. 45–64, Mar. 2005.
[45] J.-C. Liao, Y.-K. Fang, Y. T. Hou, W. H. Tseng, C. I. Yang, P. F. Hsu, Y. S. Chao, K. C. Lin, K. T. Huang, T. L. Lee, and others, “Observation of reliability of HfZrOX gate dielectric devices with different Zr/Hf ratios,” Jpn. J. Appl. Phys., vol. 47, no. 4S, p. 2616, 2008.
[46] X. Zhao and D. Vanderbilt, “First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide,” Phys. Rev. B, vol. 65, no. 23, Jun. 2002.
[47] X. Zhao and D. Vanderbilt, “Phonons and lattice dielectric properties of zirconia,” Phys. Rev. B, vol. 65, no. 7, Jan. 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57262-
dc.description.abstract本論文使用原子層沉積技術(Atomic Layer Deposition, ALD)以及遠程電漿輔助原子層沉積技術(Remote Plasma Atomic Layer Deposition, RPALD),沉積二氧化鉿(HfO2)薄膜作為MOS元件之閘極介電層,並比較使用這兩種方式所沉積的HfO2薄膜之品質。實驗顯示,以RPALD沉積之HfO2閘極介電層之電性表現較佳。此外,本論文更進一步探討HfO2閘極介電層經氮化處理後,氮原子在薄膜中之分布位置對電性的影響,,結果顯示對薄膜下半部進行氮化處理(Bottom Nitridation, BN),使氮原子之位置靠近氧化層與矽基板之介面,HfO2閘極介電層電性表現較佳,其電容等效厚度(Capacitance Equivalent Thickness, CET)可達1.3nm,而介電係數可達16.48。此外,由於鰭式場效電晶體(FinFET)的發展日趨重要,因此同樣的實驗也在110方向之矽基板上進行,實驗結果之趨勢與沉積在100方向之矽基板相同,BN之電性表現較佳,CET可達1.33nm,介電係數可達16.45。本論文的最後一部分則研究利用RPALD技術沉積不同Hf/Zr比例之氧化鋯鉿(HfZrO)閘極介電層,結果顯示隨著Zr成分的上升,在退火後薄膜內形成正方晶相(tetragonal phase)的比例增加,因此提高介電係數,但漏電流密度也同時增加,而透過氮化處理可抑制漏電流密度,,其CET可達1.2nm,介電係數可達20.22,而漏電流密度為4.0x10-4A/cm2。zh_TW
dc.description.abstractIn the thesis, hafnium oxides (HfO2) gate dielectrics were deposited by thermal mode atomic layer deposition (ALD) and remote plasma atomic layer deposition (RPALD) as the gate dielectrics in metal-oxide-semiconductor (MOS) devices. The experimental result reveals that the electrical properties of HfO2 gate dielectrics prepared by RPALD is superior to that deposited by thermal mode ALD. The effect of nitridation treatment on the electrical properties of HfO2 gate dielectrics was further investigated, in which the nitridation treatments were performed on the top (TN) and bottom (BN) region of the HfO2 gate dielectrics, respectively. As compared with the TN samples, the BN samples exhibit a superior electrical properties, probably due to the suppressed interfacial layer.The capacitance equivalent thickness (CET) of 1.3nm and an effective dielectric constant of 16.48 was achieved in the BN samples. In addition, because the progress of FinFET is of major interest, the same experiments were also carried out on Si(110) substrate. Similar results were also obtained: the electrical properties of the BN samples are also better than those of the TN samples, with a low CET of 1.33 nm and an effective dielectric constant of 16.45 Finally, hafnium zirconium oxides (HfZrO) with different ratios of Hf:Zr were prepared by RPALD. The tetragonal crystalline phase was observed after the post-deposition annealing with an increase of the Zr composition. Thus the dielectric constant was enhanced but the leakage current density increased due to the crystalline gate dielectrics. Therefore, a further nitridation treatment was performed to suppress the leakage current density. As a result, a low CET of 1.2nm, a high effective dielectric constant of 20.22, and a low leakage current density of 4.0x10-4A/cm2 was reached in the HfZrO gate dielectrics.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:39:37Z (GMT). No. of bitstreams: 1
ntu-103-R01527058-1.pdf: 3146512 bytes, checksum: ed8245eadd7f548ecb4a9c0aee3ab8b2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 I
致謝 II
摘要 III
Abstract IV
圖目錄 IX
表目錄 XII
第一章 簡介 1
1.1 前言 1
1.2 研究動機 1
1.3 原子層沉積技術 3
1.3.1 原子層沉積技術 3
1.3.2 電漿輔助原子層沉積技術 6
1.4 論文導覽 8
第二章 TDMAH之基本性質測試以及利用傳統ALD和PEALD沉積之HfO2薄膜性質比較 9
2.1 簡介 9
2.2 實驗步驟 11
2.2.1 清洗試片 11
2.2.2 沉積HfO2薄膜 11
2.2.3 鍍製電極 12
2.2.4 退火處理 12
2.2.5 電性量測 12
2.3 實驗結果與討論 13
2.3.1 HfO2之ALD製程窗口 13
2.3.2 電性數據分析 15
2.4 結論 23
第三章 不同氮化處理位置對HfO2薄膜電性之影響 24
3.1 簡介 24
3.1.1 氮化處理 24
3.1.2 鰭式場效電晶體(FinFET) 25
3.2 實驗步驟 26
3.2.1 清洗試片 26
3.2.2 沉積HfO2薄膜及氮化處理 26
3.2.3 鍍製電極 28
3.2.4 退火處理 28
3.2.5 電性量測 28
3.3 實驗結果與討論 29
3.3.1 以RPALD沉積HfO2薄膜在Si(100) 29
3.3.2 以傳統ALD沉積HfO2薄膜在Si(100) 32
3.3.3 以傳統ALD沉積HfO2薄膜在Si(110) 41
3.3.4 氮化HfO2薄膜成分與鍵結分析 48
3.3.5 氮化HfO2薄膜之介面層厚度 51
3.4 結論 51
第四章 不同Hf:Zr之ALD沉積循環數比例對HfZrO閘極介電層電性的影響 53
4.1 簡介 53
4.2 實驗步驟 54
4.2.1 清洗試片 54
4.2.2 沉積HfO2與ZrO2薄膜 55
4.2.3 鍍製電極 56
4.2.4 退火處理 56
4.2.5 電性量測 56
4.3 實驗結果與討論 57
4.4 結論 67
第五章 總結 68
參考文獻 70
dc.language.isozh-TW
dc.title以原子層沉積技術成長氮化二氧化鉿閘極介電層之金氧半電容元件之研究zh_TW
dc.titleStudy of Metal-Oxide-Semiconductor Capacitors with Nitrided Hafnium Oxide Gate Dielectrics Grown by Atomic Layer Depositionen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏鴻,吳肇欣,李峻霣
dc.subject.keyword原子層沉積技術,遠程電漿輔助原子層沉積技術,二氧化鉿,氧化鋯鉿,金屬氧化物半導體,高介電係數閘極介電層,氨氣電漿處理,zh_TW
dc.subject.keywordatomic layer deposition(ALD),remote plasma atomic layer deposition(RPALD),hafnium oxide,hafnium zirconium oxide,metal oxide semiconductor (MOS),High-K dielectric,remote NH3 plasma treatment,en
dc.relation.page75
dc.rights.note有償授權
dc.date.accepted2014-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
3.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved