Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57239
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorYung-Sheng Laien
dc.contributor.author賴詠盛zh_TW
dc.date.accessioned2021-06-16T06:38:54Z-
dc.date.available2020-08-04
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-24
dc.identifier.citationDemirbas, A. Agricultural based activated carbons for the removal of dyes from aqueous solutions: A review. J. Hazard. Mater. 167, 1–9 (2009).
Gong, R., Zhang, X., Liu, H., Sun, Y. Liu, B. Uptake of cationic dyes from aqueous solution by biosorption onto granular kohlrabi peel. Bioresour. Technol. 98, 1319–1323 (2007).
Mane, V. S., Deo Mall, I. Chandra Srivastava, V. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. J. Environ. Manage. 84, 390–400 (2007).
Ponnusami, V., Vikram, S. Srivastava, S. N. Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 152, 276–286 (2008).
Suteu, D. Bilba, D. Equilibrium and kinetic study of reactive dye Brilliant Red HE-3B adsorption by activated charcoal. Acta Chim. Slov. 52, 73–79 (2005).
Nidheesh, P.V., Zhou, M. Oturan, M. A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere 197, 210–227 (2018).
Barredo-Damas, S. et al. Study of the UF process as pretreatment of NF membranes for textile wastewater reuse. Desalination 200, 745–747 (2006).
Katheresan, V., Kansedo, J. Lau, S. Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 6, 4676–4697 (2018).
Rauf, M. A. Salman Ashraf, S. Survey of recent trends in biochemically assisted degradation of dyes. Chem. Eng. J. 209, 520–530 (2012).
Namasivayam, C., and Dyes Kavitha. Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes. Pigments. 54(1), 47-58 (2002).
Malik, P. K. Saha, S. K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep. Purif. Technol. 31, 241–250 (2003).
Rodríguez Couto, S. Dye removal by immobilised fungi. Biotechnol. Adv. 27, 227–235 (2009).
Ju, D. J. et al. Biosorption of a reactive dye (Rhodamine-B) from an aqueous solution using dried biomass of activated sludge. Bioresour. Technol. 99, 7971–7975 (2008).
Gu, C., Karthikeyan, K. G., Sibley, S. D. Pedersen, J. A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66, 1494–1501 (2007).
Klemola, K., Pearson, J., vonWright, A., Liesivuori, J. Lindström-Seppä, P. Evaluating the toxicity of reactive dyes and dyed fabrics with the hepa-1 cytotoxicity test. Autex Research Journal vol. 7 224–230 (2007).
Klemola, K., Pearson, J., vonWright, A., Liesivuori, J. Lindström-Seppä, P. Evaluating the toxicity of reactive dyes and dyed fabrics with the hepa-1 cytotoxicity test. Autex Res. J. 7, 224–230 (2007).
Srivastava, S., Sinha, R. Roy, D. Toxicological effects of malachite green. Aquat. Toxicol. 66, 319–329 (2004).
Mohan, S.V., Bhaskar, Y.V. Karthikeyan, J. Biological decolourisation of simulated azo dye in aqueous phase by algae Spirogyra species. Int. J. Environ. Pollut. 21, 211–222 (2004).
Mezohegyi, Gergo, et al. Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J. Environ. Manage. 102, 148-164 (2012).
Gonçalves, I. C. et al. Evaluation of an integrated anaerobic/aerobic SBR system for the treatment of wool dyeing effluents: Purification of wool dyeing effluent in a SBR. Biodegradation 16, 81–89 (2005).
Tang, L. et al. Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chem. Eng. J. 336, 160–169 (2018).
Yagub, M. T., Sen, T. K., Afroze, S. Ang, H. M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209, 172–184 (2014).
Rafatullah, M., Sulaiman, O., Hashim, R. Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 177, 70–80 (2010).
Al-Alwani, M. A. M., Ludin, N. A., Mohamad, A. B., Kadhum, A. A. H. Mukhlus, A. Application of dyes extracted from Alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 192, 487–498 (2018).
dosSantos, A. B., Cervantes, F. J. vanLier, J. B. Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology. Bioresour. Technol. 98, 2369–2385 (2007).
Wang, J. et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem. Eng. J. 334, 569–578 (2018).
Khan, N. A., Bhadra, B. N. Jhung, S. H. Heteropoly acid-loaded ionic liquid@metal-organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel. Chem. Eng. J. 334, 2215–2221 (2018).
Marchetti, P., Jimenez Solomon, M. F., Szekely, G. Livingston, A. G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 114, 10735–10806 (2014).
Mohammad, A. W. et al. Nanofiltration membranes review: Recent advances and future prospects. Desalination 356, 226–254 (2015).
Yang, Z. et al. A review on reverse osmosis and nanofiltration membranes for water purification. Polymers (Basel). 11, 1–22 (2019).
Yan, F. et al. Improving the water permeability and antifouling property of thin-film composite polyamide nanofiltration membrane by modifying the active layer with triethanolamine. J. Memb. Sci. 513, 108–116 (2016).
Zhao, Y., Dai, L., Zhang, Q., Zhou, S. Zhang, S. Chlorine-resistant sulfochlorinated and sulfonated polysulfone for reverse osmosis membranes by coating method. J. Colloid Interface Sci. 541, 434–443 (2019).
Yang, S., Zhen, H. Su, B. Polyimide thin film composite (TFC) membranes: Via interfacial polymerization on hydrolyzed polyacrylonitrile support for solvent resistant nanofiltration. RSC Adv. 7, 42800–42810 (2017).
Yasukawa, M., Mishima, S., Tanaka, Y., Takahashi, T. Matsuyama, H. Thin-film composite forward osmosis membrane with high water flux and high pressure resistance using a thicker void-free polyketone porous support. Desalination 402, 1–9 (2017).
Mahdavi, H. Moslehi, M. A new thin film composite nanofiltration membrane based on PET nanofiber support and polyamide top layer: preparation and characterization. J. Polym. Res. 23, 1–9 (2016).
Alsvik, I. L. Hägg, M. B. Preparation of thin film composite membranes with polyamide film on hydrophilic supports. J. Memb. Sci. 428, 225–231 (2013).
Yoon, K., Hsiao, B. S. Chu, B. High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds. J. Memb. Sci. 326, 484–492 (2009).
Da, X. et al. Preparation of zirconia nanofiltration membranes through an aqueous sol-gel process modified by glycerol for the treatment of wastewater with high salinity. J. Memb. Sci. 504, 29–39 (2016).
Elma, M., Yacou, C., Diniz da Costa, J. C. Wang, D. K. Performance and long term stability of mesoporous silica membranes for desalination. Membranes (Basel). 3, 136–150 (2013).
Chen, X., Qiu, M., Ding, H., Fu, K. Fan, Y. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification. Nanoscale 8, 5696–5705 (2016).
Han, R. Wu, P. High-performance graphene oxide nanofiltration membrane with continuous nanochannels prepared by the in situ oxidation of MXene. J. Mater. Chem. A 7, 6475–6481 (2019).
Yang, J., Lin, G. S., Mou, C. Y. Tung, K. L. Mesoporous Silica Thin Membrane with Tunable Pore Size for Ultrahigh Permeation and Precise Molecular Separation. ACS Appl. Mater. Interfaces 12, 7459–7465 (2020).
Chen, X. et al. Preparation of high-flux γ-alumina nanofiltration membranes by using a modified sol-gel method. Microporous Mesoporous Mater. 214, 195–203 (2015).
Goh, P. S. Ismail, A. F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 434, 60–80 (2018).
Deng, Y. H. et al. A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance. Angewandte Chemie - International Edition vol. 55 12793–12796 (2016).
Lin, R., Villacorta Hernandez, B., Ge, L. Zhu, Z. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 6, 293–312 (2018).
Liu, Y. C. et al. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. J. Memb. Sci. 582, 358–366 (2019).
Li, Yi, Tai‐Shung Chung, and Santi Kulprathipanja. Novel Ag+‐zeolite/polymer mixed matrix membranes with a high CO2/CH4 selectivity. AIChE J. 53(3), 610-616 (2007).
Kang, C. H. et al. Synthesis of ZIF-7/chitosan mixed-matrix membranes with improved separation performance of water/ethanol mixtures. J. Memb. Sci. 438, 105–111 (2013).
Lin, Y. F. et al. Synthesis of mesoporous SiO2 xerogel/chitosan mixed-matrix membranes for butanol dehydration. J. Ind. Eng. Chem. 57, 297–303 (2018).
Li, Qiang, et al. Effects of ordered mesoporous silica on the performances of composite nanofiltration membrane. Desalination 327, 24-31 (2013).
Chen, J. T. et al. Zeolite-filled porous mixed matrix membranes for air separation. Ind. Eng. Chem. Res. 53, 2781–2789 (2014).
Si, Z. et al. A high-permeance organic solvent nanofiltration membrane via covalently bonding mesoporous MCM-41 with polyimide. Sep. Purif. Technol. 241, 116545 (2020).
Thakur, V. K. Voicu, S. I. Recent advances in cellulose and chitosan based membranes for water purification: A concise review. Carbohydr. Polym. 146, 148–165 (2016).
Zhao, Y. et al. Incorporation of Ag nanostructures into channels of nitrided mesoporous silica. Microporous Mesoporous Mater. 111, 300–306 (2008).
Alothman, Z. A. A review: Fundamental aspects of silicate mesoporous materials. Materials (Basel). 5, 2874–2902 (2012).
Saad, A., Snoussi, Y., Abderrabba, M. Chehimi, M. M. Ligand-modified mesoporous silica SBA-15/silver hybrids for the catalyzed reduction of methylene blue. RSC Adv. 6, 57672–57682 (2016).
Baldino, L., Concilio, S., Cardea, S., DeMarco, I. Reverchon, E. Complete glutaraldehyde elimination during chitosan hydrogel drying by SC-CO2 processing. J. Supercrit. Fluids 103, 70–76 (2015).
Sutirman, Z. A., Sanagi, M. M., Abd Karim, K. J. Wan Ibrahim, W. A. Preparation of methacrylamide-functionalized crosslinked chitosan by free radical polymerization for the removal of lead ions. Carbohydr. Polym. 151, 1091–1099 (2016).
Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L. Rocha, H. A. O. Does the use of chitosan contribute to oxalate kidney stone formation? Mar. Drugs 13, 141–158 (2015).
Yang, L., Wang, Z. Zhang, J. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction. J. Mater. Chem. A 5, 15342–15355 (2017).
Yu, G. et al. Constructing Connected Paths between UiO-66 and PIM-1 to Improve Membrane CO2 Separation with Crystal-Like Gas Selectivity. Adv. Mater. 31, 1–9 (2019).
Liu, S., Liu, G., Zhao, X. Jin, W. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. J. Memb. Sci. 446, 181–188 (2013).
Zhu, J., Tian, M., Zhang, Y., Zhang, H. Liu, J. Fabrication of a novel ‘loose’ nanofiltration membrane by facile blending with Chitosan-Montmorillonite nanosheets for dyes purification. Chem. Eng. J. 265, 184–193 (2015).
Liu, S., Wang, Z. Song, P. Free Radical Graft Copolymerization Strategy to Prepare Catechin-Modified Chitosan Loose Nanofiltration (NF) Membrane for Dye Desalination. ACS Sustain. Chem. Eng. 6, 4253–4263 (2018).
Wang, N., Ji, S., Zhang, G., Li, J. Wang, L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation. Chem. Eng. J. 213, 318–329 (2012).
Low, Z. X. et al. Fouling resistant 2D boron nitride nanosheet – PES nanofiltration membranes. J. Memb. Sci. 563, 949–956 (2018).
Wang, L. et al. The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water. RSC Adv. 5, 50942–50954 (2015).
Wang, J. et al. Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability. J. Memb. Sci. 510, 27–37 (2016).
Zhu, J. et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J. Mater. Chem. A 4, 1980–1990 (2016).
Xing, L., Guo, N., Zhang, Y., Zhang, H. Liu, J. A negatively charged loose nanofiltration membrane by blending with poly (sodium 4-styrene sulfonate) grafted SiO2 via SI-ATRP for dye purification. Sep. Purif. Technol. 146, 50–59 (2015).
Yu, L., Zhang, Y., Wang, Y., Zhang, H. Liu, J. High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres. J. Hazard. Mater. 287, 373–383 (2015).
Fan, H., Gu, J., Meng, H., Knebel, A. Caro, J. High-Flux Membranes Based on the Covalent Organic Framework COF-LZU1 for Selective Dye Separation by Nanofiltration. Angew. Chemie - Int. Ed. 57, 4083–4087 (2018).
Mao, X. et al. Molecular level studies on binding modes of labeling molecules with polyalanine peptides. Nanoscale 3, 1592–1599 (2011).
McGuinness, E. K., Zhang, F., Ma, Y., Lively, R. P. Losego, M. D. Vapor Phase Infiltration of Metal Oxides into Nanoporous Polymers for Organic Solvent Separation Membranes. Chem. Mater. 31, 5509–5518 (2019).
Niu, Y., Ying, D. Jia, J. Continuous adsorption of copper ions by chitosan-based fiber in adsorption bed. J. Environ. Eng. (United States) 145, 1–9 (2019).
Hsu, J. C., Lin, Y. H. Wang, P. W. X-ray photoelectron spectroscopy analysis of nitrogen-doped TiO2 films prepared by reactive-ion-beam sputtering with various NH3/O2 gas mixture ratios. Coatings 10, (2020).
Galve, A. et al. Copolyimide mixed matrix membranes with oriented microporous titanosilicate JDF-L1 sheet particles. J. Memb. Sci. 370, 131–140 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57239-
dc.description.abstract為了解決高鹽度染料廢水直接排放所造成的環境汙染問題,開發高效率且低耗能的淨化技術用於的染料廢水淨化是迫切需要的,然而,常用的傳統淨化技術如化學降解法、吸附法都難以高效率地淨化的染料廢水。由於奈米過濾技術具有低耗能且對環境較友善的特性,因此在染料廢水淨化中有極大的應用潛力。
近年來,為了實現高效率的染料廢水淨化,並通過增加過濾膜的膜通量來降低耗能,許多文獻結合了多孔材料的滲透性與高分子的柔性及易於成膜的優勢製成複合基材膜 (mixed matrix membranes, MMMs) 。本研究通過具有垂直通道的中孔洞二氧化矽薄膜SBA⊥15作為過濾主體,將其與殼聚醣高分子結合製成複合基材膜以提升奈米過濾的效率,通過分別修飾不同官能基調控SBA⊥15之表面特性,如環氧基 (SBA⊥15-Epo) 及胺基 (SBA⊥15-NH2) ,實現了其與殼聚醣的共價鍵結合進而增加複合體系的相容性和機械強度。實驗結果證實,SBA⊥15-Epo/殼聚醣複合膜表現出最佳的奈米過濾性能,對分子量大於585 g / mol的染料表現出90%以上的阻擋率,並具有優於單純殼聚醣過濾膜的膜通量,此外,在染料/鹽類混合水溶液的選擇性過濾分離實驗中,SBA⊥15-Epo/殼聚醣複合膜對染料分子和無機鹽類表現出高效的選擇性分離性能,對剛果紅分子 (Congo red, M.W.=696.67) 表現出99.9%以上的阻擋率及85%的氯化鈉 (NaCl) 滲透率,因此,該SBA⊥15-Epo殼聚醣複合膜體系在染料廢水淨化中有很大的應用潛力。
zh_TW
dc.description.abstractTextile dye wastewater with high salinity is directly discharge every year, causing serious environmental pollution and water resource waste. Consequently, it is imperative to design effective approaches for dye recycle and selective dye/inorganic salt separation from textile dye waste water. However, traditional technologies, such chemical degradation and adsorption, are inadequate for this purpose. Nanofiltration (NF) technology becomes an attractive alternative for effective removal of textile dyes from wastewater and dye desalination due to its environment friendliness and low energy consumption.
In recent years, in order to achieve efficient nanofiltration, porous fillers were utilized to prepare the mixed matrix membranes (MMMs). Herein, SBA⊥15, a mesoporous thin film with perpendicular nanochannel, was selected as a filler and mixed with chitosan polymer as nanofiltration membranes. By functionalizing amino and epoxy groups into SBA⊥15, respectively, covalent bonds between amine-functionalized, epoxy-functionalized SBA⊥15 (SBA⊥15-NH2 and SBA⊥15-Epo) with chitosan were formed so as to improve the compatibility between SBA⊥15 and polymer. As a result, SBA⊥15-Epo/Chitosan MMM demonstrates superior nanofiltration performance for various dye molecules with a cut off of 585 g/mol and improved water permeance compared with chitosan membrane. Besides, the excellent performance in selective separation of dye/salt in mixed solution was demonstrated, with 99.9% rejection of Congo red and 85% permeation of NaCl. Thus, the SBA⊥15-Epo/Chitosan is highly potential in purification of textile dye wastewater.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:38:54Z (GMT). No. of bitstreams: 1
U0001-2207202012060900.pdf: 6552345 bytes, checksum: 75201542f685b04550e84c65d6e4ce13 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 工業染料廢水 1
1.1.1 工業染料廢水的特性與危害 1
1.1.2 染料廢水處理方法 4
1.2 過濾膜的發展與研究 8
1.2.3 奈米過濾的研究與發展 8
1.2.4 有機/高分子過濾膜 9
1.2.5 無機過濾膜 10
1.3 複合基材膜的發展與研究 12
1.3.1 複合基材膜的應用 13
1.3.2 複合基材膜之問題與改善方法 17
1.4 研究動機 19
第二章 實驗方法與儀器 20
2.1 實驗藥品 20
2.2 實驗方法 21
2.2.1 中孔洞二氧化矽材料SBA⊥15薄膜之合成 21
2.2.2 SBA⊥15薄膜之官能基修飾 22
2.2.2.1 修飾APTMS之SBA⊥15薄膜 22
2.2.2.2 修飾GPTMS之SBA⊥15薄膜 22
2.2.3 過濾膜製備 23
2.2.3.3 殼聚醣過濾膜製備 23
2.2.3.4 SBA⊥15薄膜系列/殼聚醣複合膜製備 23
2.3 實驗儀器與裝置 25
2.4 儀器鑑定原理與方法 26
2.4.1 掃描式電子顯微鏡 26
2.4.2 穿透式電子顯微鏡 26
2.4.3 比表面積與孔徑分析儀 26
2.4.4 紫外-可見光光譜儀 27
2.4.5 X光繞射儀 27
2.4.6 奈米粒徑及電位分析儀 28
2.4.7 傅里葉轉換紅外光譜 28
2.4.8 接觸角儀 29
2.4.9 掠角入射式小角度X光散射 29
2.4.10 X光光電子光譜 30
2.5 過濾實驗方法 30
2.5.1 過濾裝置-高壓過濾器 30
2.5.2 純水溶液過濾測試 31
2.5.2.1 染料水溶液配置與過濾實驗 31
2.5.2.2 鹽類水溶液過濾測試 32
2.5.2.3 鹽類及染料分子混合水溶液過濾測試 33
2.5.2.4 長時間過濾測試 33
2.5.3 有機溶液過濾實驗方法 34
2.5.3.1 乙醇溶液膜通量測試 34
2.5.3.2 染料乙醇溶液配置與過濾實驗 34
第三章 結果與討論 36
3.1 SBA⊥15薄膜材料鑑定與結構分析 36
3.1.1 電子顯微鏡影像 36
3.1.1.1 掃描式電子顯微鏡 (SEM) 36
3.1.1.2 穿透式電子顯微鏡 (TEM) 37
3.1.2 小角度X光繞射分析(SAXRD) 38
3.1.3 比表面積與孔隙度分析 40
3.1.4 傅立葉轉換紅外光光譜分析 42
3.1.5 界面電位分析 43
3.2 SBA⊥15/殼聚醣複合膜之結構分析與鑑定 44
3.2.1 電子顯微鏡影像 44
3.2.2 傅立葉轉換紅外光光譜分析 47
3.2.3 接觸角測試 49
3.3 SBA⊥15系列/殼聚醣複合膜之過濾結果 49
3.3.1 SBA⊥15系列/殼聚醣複合膜之染料水溶液過濾 49
3.3.1.1 染料水溶液過濾測試 49
3.3.1.2 純水通量測試 50
3.3.1.3 SBA⊥15系列/殼聚醣複合膜對染料水溶液之過濾效率 51
3.3.1.4 SBA⊥15-Epo/殼聚醣複合膜於染料/鹽類混合水溶液過濾分離效率 56
3.3.1.5 長時間過濾性能分析 57
3.3.2 與現今奈米過濾效率比較 58
3.3.3 SBA⊥15系列/殼聚醣複合膜之有機溶劑過濾 60
3.3.3.1 乙醇溶液通量測試 60
3.3.3.2 染料乙醇溶液過濾效率 60
3.3.4 分子尺寸與過濾效率探討 61
3.3.5 過濾分離機制分析 63
第四章 結論 67
參考文獻 68
dc.language.isozh-TW
dc.title中孔洞二氧化矽/殼聚醣複合膜應用於奈米過濾之研究
zh_TW
dc.titleMesoporous Silica Thin Films/Chitosan Mixed Matrix Membranes for Selective Nanofiltration
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖尉斯(Wei-Ssu Liao),童國倫(Kuo-Lun Tung)
dc.subject.keyword奈米過濾,染料廢水淨化,奈米過濾膜,中孔洞二氧化矽薄膜材料,殼聚醣,zh_TW
dc.subject.keywordNanofiltration,Dye wastewater purification,Nanofiltration membranes,Mesoporous silica thin films,Chitosan,en
dc.relation.page76
dc.identifier.doi10.6342/NTU202001726
dc.rights.note有償授權
dc.date.accepted2020-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
U0001-2207202012060900.pdf
  目前未授權公開取用
6.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved