請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57220完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 雷欽隆 | |
| dc.contributor.author | Ming-Hwa Tsai | en |
| dc.contributor.author | 蔡明驊 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:38:18Z | - |
| dc.date.available | 2014-08-08 | |
| dc.date.copyright | 2014-08-08 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-30 | |
| dc.identifier.citation | [1] Health Insurance Portability and Accountability Act (HIPAA). http://
en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act [2] K. Benitez and B Malin. Evaluating re-identification risks with respect to the HIPAA privacy rule. Journal of the American Medical Informatics Association, 17(2): 169!V177, 2010. [3] L. Sweeney. k-annoymity: a model for protecting privacy. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557-570, 2002 [4] K. LeFevre, David J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-domain K-anonymity. In Proceedings of the 2005 ACM SIGMOD international conference on Management of data (SIGMOD ’05). ACM, New York, NY, USA, 49-60. [5] K. El Emam and F. Dankar Protecting privacy using k-anonymity. Journal of the American Medical Informatics Association, 15(5):627!V637, 2008. [6] K. El Eman. A globally optimal k-anonymity method for the de-identification of health data. J Am Med Inform Assoc 2009 16:670-682 doi: 10.1197/jamia. M3133 26 [7] L. Sweeney. Achieving k-annoymity privacy protection using generalization and suppression International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):571-588, 2002. [8] Aggarwal, Gagan and Feder, Tomas and Kenthapadi, Krishnaram and Motwani, Rajeev and Panigrahy, Rina and Thomas, Dilys and Zhu, An. Approximation Algorithms for k-Annoymity. Proceedings of the International Conference on Database Theory (ICDT 2005), January 5-7, 2005, Edinburgh, UK. [9] H. Park, K. Shim. Approximate algorithm for K-annoymity. Proceedings of the 2007 ACM SIGMOD international conference on Management of data, Pages 67-78, ACM New York, NY, USA 2007. [10] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 1, Article 3 (March 2007). [11] T. Truta, F. Fotouhi, and D. Barth-Jones. Disclosure risk measures for microdata. International Conference on Scientific and Statistical Databases Management, pages 15!V22, 2003. [12] K. Benitez, G. Loukides, and B. Malin. Beyond safe harbor: automatic discovery of health information de-identification policy alternatives. Proceedings of the 1st ACM International Health Informatics Symposium, pages 163 - 172, 2010. [13] W. Xia, R. Heatherly, X. Ding, J. Li, B. Malin. Efficient discovery of de-identification policy options through a risk-utility frontier. Proceedings of the third ACM conference on Data and application security and privacy, pages 59-70, 2013. 27 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57220 | - |
| dc.description.abstract | 對於資料分析的研究來說,尤其是醫療資訊方面,資料個體本身的
隱私性以及資料可應用程度是一個難解的取捨。基於對於個人隱私的 需求,在我們發布資料前會以盡量保持資料的完整性為前提將其進行 某種程度的模糊化,讓惡意使用者無法分辨其真實的個體。此稱為去 識別化技術。 此篇論文提出了在不同的去識別化風險下快速有效率地找到資料完整 性較佳的去識別化方式,藉由將問題本身映射到一個晶格模型(lattice model) 的探索問題上,並且使用了子晶格(sublattice) 的概念加速我們 的搜尋。實驗結果顯示此種方法在同樣的搜索數目下,可以找到資訊 遺失量較低的去識別化方式。 | zh_TW |
| dc.description.abstract | In the study of data analysis, especially in the field of medical information,
there is a complex tradeoff between the privacy of the data and the applicability of the data. Due to the demand for individual privacy on maintaining the integrity of the original data, the data are being more or less obscured before the release to avoid the malicious users from identifying the true owners. This technique is called de-identification. This dissertation introduces a novel technique that is able to efficiently and quickly find a de-identification policy with satisfactory data integrity under variant re-identification risks. We probe into the problem by applying it onto the lattice model [12] and use the concept of sublattice [13] to accelerate the process. The results appear to be promising as in comparison to other techniques [12], we can find de-identification policies with less informationloss under the same search times. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:38:18Z (GMT). No. of bitstreams: 1 ntu-103-R01921048-1.pdf: 2397566 bytes, checksum: ca9d74b89fd2a874fd00756dc374c38b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要iii Abstract iv Contents v List of Figures vii List of Tables viii 1 Introduction 1 1.1 Information Loss-based De-identification . . . . . . . . . . . . . . . . . 1 1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Work 3 3 Methods 5 3.1 De-identification Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.1 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.1.2 Policy Representation . . . . . . . . . . . . . . . . . . . . . . . 6 3.2 Risk Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.3 Information Loss Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 8 v 3.4 Lattice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.5 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5.2 Sublattice Approaching Search . . . . . . . . . . . . . . . . . . . 12 3.5.3 Slice Sublattice Contains Risk Upper Bound . . . . . . . . . . . 13 4 Experiments 16 4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Conclusion 25 Bibliography 26 | |
| dc.language.iso | en | |
| dc.subject | 策略探索 | zh_TW |
| dc.subject | 資訊遺失 | zh_TW |
| dc.subject | 去識別化 | zh_TW |
| dc.subject | 再識別風險 | zh_TW |
| dc.subject | re-identification risk | en |
| dc.subject | information loss | en |
| dc.subject | de-identification | en |
| dc.subject | policies discovery | en |
| dc.title | 在不同再識別風險下基於資訊遺失的去識別化策略探索 | zh_TW |
| dc.title | Information Loss Based Discovery of De-identification Policies
Under Variant Re-identification Risks | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭斯彥,顏嗣鈞,黃秋煌,莊仁輝 | |
| dc.subject.keyword | 資訊遺失,去識別化,再識別風險,策略探索, | zh_TW |
| dc.subject.keyword | information loss,de-identification,re-identification risk,policies discovery, | en |
| dc.relation.page | 31 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-31 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
