Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57220
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor雷欽隆
dc.contributor.authorMing-Hwa Tsaien
dc.contributor.author蔡明驊zh_TW
dc.date.accessioned2021-06-16T06:38:18Z-
dc.date.available2014-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation[1] Health Insurance Portability and Accountability Act (HIPAA). http://
en.wikipedia.org/wiki/Health_Insurance_Portability_and_Accountability_Act
[2] K. Benitez and B Malin. Evaluating re-identification risks with respect to the HIPAA
privacy rule. Journal of the American Medical Informatics Association, 17(2):
169!V177, 2010.
[3] L. Sweeney. k-annoymity: a model for protecting privacy. International Journal on
Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557-570, 2002
[4] K. LeFevre, David J. DeWitt, and R. Ramakrishnan. Incognito: efficient full-domain
K-anonymity. In Proceedings of the 2005 ACM SIGMOD international conference
on Management of data (SIGMOD ’05). ACM, New York, NY, USA, 49-60.
[5] K. El Emam and F. Dankar Protecting privacy using k-anonymity. Journal of the
American Medical Informatics Association, 15(5):627!V637, 2008.
[6] K. El Eman. A globally optimal k-anonymity method for the de-identification of health
data. J Am Med Inform Assoc 2009 16:670-682 doi: 10.1197/jamia. M3133
26
[7] L. Sweeney. Achieving k-annoymity privacy protection using generalization and suppression
International Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):571-588, 2002.
[8] Aggarwal, Gagan and Feder, Tomas and Kenthapadi, Krishnaram and Motwani, Rajeev
and Panigrahy, Rina and Thomas, Dilys and Zhu, An. Approximation Algorithms
for k-Annoymity. Proceedings of the International Conference on Database Theory
(ICDT 2005), January 5-7, 2005, Edinburgh, UK.
[9] H. Park, K. Shim. Approximate algorithm for K-annoymity. Proceedings of the 2007
ACM SIGMOD international conference on Management of data, Pages 67-78, ACM
New York, NY, USA 2007.
[10] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. L-diversity:
Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1, 1, Article 3 (March
2007).
[11] T. Truta, F. Fotouhi, and D. Barth-Jones. Disclosure risk measures for microdata.
International Conference on Scientific and Statistical Databases Management, pages
15!V22, 2003.
[12] K. Benitez, G. Loukides, and B. Malin. Beyond safe harbor: automatic discovery of
health information de-identification policy alternatives. Proceedings of the 1st ACM
International Health Informatics Symposium, pages 163 - 172, 2010.
[13] W. Xia, R. Heatherly, X. Ding, J. Li, B. Malin. Efficient discovery of de-identification
policy options through a risk-utility frontier. Proceedings of the third ACM conference
on Data and application security and privacy, pages 59-70, 2013.
27
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57220-
dc.description.abstract對於資料分析的研究來說,尤其是醫療資訊方面,資料個體本身的
隱私性以及資料可應用程度是一個難解的取捨。基於對於個人隱私的
需求,在我們發布資料前會以盡量保持資料的完整性為前提將其進行
某種程度的模糊化,讓惡意使用者無法分辨其真實的個體。此稱為去
識別化技術。
此篇論文提出了在不同的去識別化風險下快速有效率地找到資料完整
性較佳的去識別化方式,藉由將問題本身映射到一個晶格模型(lattice
model) 的探索問題上,並且使用了子晶格(sublattice) 的概念加速我們
的搜尋。實驗結果顯示此種方法在同樣的搜索數目下,可以找到資訊
遺失量較低的去識別化方式。
zh_TW
dc.description.abstractIn the study of data analysis, especially in the field of medical information,
there is a complex tradeoff between the privacy of the data and the applicability
of the data.
Due to the demand for individual privacy on maintaining the integrity of
the original data, the data are being more or less obscured before the release
to avoid the malicious users from identifying the true owners. This technique
is called de-identification.
This dissertation introduces a novel technique that is able to efficiently and
quickly find a de-identification policy with satisfactory data integrity under
variant re-identification risks. We probe into the problem by applying it onto
the lattice model [12] and use the concept of sublattice [13] to accelerate
the process. The results appear to be promising as in comparison to other
techniques [12], we can find de-identification policies with less informationloss
under the same search times.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:38:18Z (GMT). No. of bitstreams: 1
ntu-103-R01921048-1.pdf: 2397566 bytes, checksum: ca9d74b89fd2a874fd00756dc374c38b (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
摘要iii
Abstract iv
Contents v
List of Figures vii
List of Tables viii
1 Introduction 1
1.1 Information Loss-based De-identification . . . . . . . . . . . . . . . . . 1
1.2 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Related Work 3
3 Methods 5
3.1 De-identification Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.1 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1.2 Policy Representation . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Risk Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Information Loss Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 8
v
3.4 Lattice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.5 Search Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5.2 Sublattice Approaching Search . . . . . . . . . . . . . . . . . . . 12
3.5.3 Slice Sublattice Contains Risk Upper Bound . . . . . . . . . . . 13
4 Experiments 16
4.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.1 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5 Conclusion 25
Bibliography 26
dc.language.isoen
dc.subject策略探索zh_TW
dc.subject資訊遺失zh_TW
dc.subject去識別化zh_TW
dc.subject再識別風險zh_TW
dc.subjectre-identification risken
dc.subjectinformation lossen
dc.subjectde-identificationen
dc.subjectpolicies discoveryen
dc.title在不同再識別風險下基於資訊遺失的去識別化策略探索zh_TW
dc.titleInformation Loss Based Discovery of De-identification Policies
Under Variant Re-identification Risks
en
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭斯彥,顏嗣鈞,黃秋煌,莊仁輝
dc.subject.keyword資訊遺失,去識別化,再識別風險,策略探索,zh_TW
dc.subject.keywordinformation loss,de-identification,re-identification risk,policies discovery,en
dc.relation.page31
dc.rights.note有償授權
dc.date.accepted2014-07-31
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved