Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57215
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor李心予
dc.contributor.authorKuan-Hung Linen
dc.contributor.author林貫浤zh_TW
dc.date.accessioned2021-06-16T06:38:09Z-
dc.date.available2019-09-04
dc.date.copyright2014-09-04
dc.date.issued2014
dc.date.submitted2014-07-30
dc.identifier.citation1. Biondi A (2003) Principles and Practice of Pediatric Oncology. Annals of Oncology 14: 661-662.
2. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203-216.
3. Young JL, Jr., Ries LG, Silverberg E, Horm JW, Miller RW (1986) Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer 58: 598-602.
4. Friedman GK, Castleberry RP (2007) Changing trends of research and treatment in infant neuroblastoma. Pediatr Blood Cancer 49: 1060-1065.
5. De Bernardi B, Nicolas B, Boni L, Indolfi P, Carli M, et al. (2003) Disseminated neuroblastoma in children older than one year at diagnosis: comparable results with three consecutive high-dose protocols adopted by the Italian Co-Operative Group for Neuroblastoma. J Clin Oncol 21: 1592-1601.
6. Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, et al. (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med 341: 1165-1173.
7. Benard J, Raguenez G, Kauffmann A, Valent A, Ripoche H, et al. (2008) MYCN-non-amplified metastatic neuroblastoma with good prognosis and spontaneous regression: a molecular portrait of stage 4S. Mol Oncol 2: 261-271.
8. D'Angio GJ, Evans AE, Koop CE (1971) Special pattern of widespread neuroblastoma with a favourable prognosis. Lancet 1: 1046-1049.
9. Pession A, Tonelli R (2005) The MYCN oncogene as a specific and selective drug target for peripheral and central nervous system tumors. Curr Cancer Drug Targets 5: 273-283.
10. Hurlin PJ (2005) N-Myc functions in transcription and development. Birth Defects Res C Embryo Today 75: 340-352.
11. Strieder V, Lutz W (2002) Regulation of N-myc expression in development and disease. Cancer Lett 180: 107-119.
12. Li J, Peet GW, Balzarano D, Li X, Massa P, et al. (2001) Novel NEMO/IkappaB kinase and NF-kappa B target genes at the pre-B to immature B cell transition. J Biol Chem 276: 18579-18590.
13. Serra R, Pelton RW, Moses HL (1994) TGF beta 1 inhibits branching morphogenesis and N-myc expression in lung bud organ cultures. Development 120: 2153-2161.
14. Wenzel A, Cziepluch C, Hamann U, Schurmann J, Schwab M (1991) The N-Myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells. Embo j 10: 3703-3712.
15. Melotte V, Qu X, Ongenaert M, van Criekinge W, de Bruine AP, et al. (2010) The N-myc downstream regulated gene (NDRG) family: diverse functions, multiple applications. Faseb j 24: 4153-4166.
16. Seeger RC, Brodeur GM, Sather H, Dalton A, Siegel SE, et al. (1985) Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med 313: 1111-1116.
17. Small MB, Hay N, Schwab M, Bishop JM (1987) Neoplastic transformation by the human gene N-myc. Mol Cell Biol 7: 1638-1645.
18. Nara K, Kusafuka T, Yoneda A, Oue T, Sangkhathat S, et al. (2007) Silencing of MYCN by RNA interference induces growth inhibition, apoptotic activity and cell differentiation in a neuroblastoma cell line with MYCN amplification. Int J Oncol 30: 1189-1196.
19. Woo CW, Tan F, Cassano H, Lee J, Lee KC, et al. (2008) Use of RNA interference to elucidate the effect of MYCN on cell cycle in neuroblastoma. Pediatr Blood Cancer 50: 208-212.
20. Wada RK, Seeger RC, Reynolds CP, Alloggiamento T, Yamashiro JM, et al. (1992) Cell type-specific expression and negative regulation by retinoic acid of the human N-myc promoter in neuroblastoma cells. Oncogene 7: 711-717.
21. Abemayor E, Chang B, Sidell N (1990) Effects of retinoic acid on the in vivo growth of human neuroblastoma cells. Cancer Lett 55: 1-5.
22. Michalak M, Robert Parker JM, Opas M (2002) Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 32: 269-278.
23. Leach MR, Cohen-Doyle MF, Thomas DY, Williams DB (2002) Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. J Biol Chem 277: 29686-29697.
24. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417: 651-666.
25. Nakamura K, Zuppini A, Arnaudeau S, Lynch J, Ahsan I, et al. (2001) Functional specialization of calreticulin domains. J Cell Biol 154: 961-972.
26. Elliott T, Williams A (2005) The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol Rev 207: 89-99.
27. Bastianutto C, Clementi E, Codazzi F, Podini P, De Giorgi F, et al. (1995) Overexpression of calreticulin increases the Ca2+ capacity of rapidly exchanging Ca2+ stores and reveals aspects of their lumenal microenvironment and function. J Cell Biol 130: 847-855.
28. Mery L, Mesaeli N, Michalak M, Opas M, Lew DP, et al. (1996) Overexpression of calreticulin increases intracellular Ca2+ storage and decreases store-operated Ca2+ influx. J Biol Chem 271: 9332-9339.
29. Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, et al. (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277: 46696-46705.
30. Guo L, Lynch J, Nakamura K, Fliegel L, Kasahara H, et al. (2001) COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J Biol Chem 276: 2797-2801.
31. Kishore U, Sontheimer RD, Sastry KN, Zappi EG, Hughes GR, et al. (1997) The systemic lupus erythematosus (SLE) disease autoantigen-calreticulin can inhibit C1q association with immune complexes. Clin Exp Immunol 108: 181-190.
32. Karska K, Tuckova L, Steiner L, Tlaskalova-Hogenova H, Michalak M (1995) Calreticulin--the potential autoantigen in celiac disease. Biochem Biophys Res Commun 209: 597-605.
33. Jorgensen CS, Hansen KB, Jacobsen S, Halberg P, Ullman S, et al. (2005) Absence of high-affinity calreticulin autoantibodies in patients with systemic rheumatic diseases and coeliac disease. Scand J Clin Lab Invest 65: 403-412.
34. Papp S, Fadel MP, Opas M (2007) Dissecting focal adhesions in cells differentially expressing calreticulin: a microscopy study. Biol Cell 99: 389-402.
35. Hsieh CJ, Kim TW, Hung CF, Juang J, Moniz M, et al. (2004) Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine 22: 3993-4001.
36. Cheng WF, Hung CF, Chen CA, Lee CN, Su YN, et al. (2005) Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine 23: 3864-3874.
37. Chen CN, Chang CC, Su TE, Hsu WM, Jeng YM, et al. (2009) Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann Surg Oncol 16: 524-533.
38. Nanney LB, Woodrell CD, Greives MR, Cardwell NL, Pollins AC, et al. (2008) Calreticulin enhances porcine wound repair by diverse biological effects. Am J Pathol 173: 610-630.
39. Fadel MP, Dziak E, Lo C-M, Ferrier J, Mesaeli N, et al. (1999) Calreticulin Affects Focal Contact-dependent but Not Close Contact-dependent Cell-substratum Adhesion. Journal of Biological Chemistry 274: 15085-15094.
40. Michaels Jt, Churgin SS, Blechman KM, Greives MR, Aarabi S, et al. (2007) db/db mice exhibit severe wound-healing impairments compared with other murine diabetic strains in a silicone-splinted excisional wound model. Wound Repair Regen 15: 665-670.
41. Lu YC, Chen CN, Wang B, Hsu WM, Chen ST, et al. (2011) Changes in tumor growth and metastatic capacities of J82 human bladder cancer cells suppressed by down-regulation of calreticulin expression. Am J Pathol 179: 1425-1433.
42. Hsu WM, Hsieh FJ, Jeng YM, Kuo ML, Chen CN, et al. (2005) Calreticulin expression in neuroblastoma--a novel independent prognostic factor. Ann Oncol 16: 314-321.
43. Chang HH, Lee H, Hu MK, Tsao PN, Juan HF, et al. (2010) Notch1 expression predicts an unfavorable prognosis and serves as a therapeutic target of patients with neuroblastoma. Clin Cancer Res 16: 4411-4420.
44. Xiao G, Chung TF, Pyun HY, Fine RE, Johnson RJ (1999) KDEL proteins are found on the surface of NG108-15 cells. Brain Res Mol Brain Res 72: 121-128.
45. Xiao G, Chung TF, Fine RE, Johnson RJ (1999) Calreticulin is transported to the surface of NG108-15 cells where it forms surface patches and is partially degraded in an acidic compartment. J Neurosci Res 58: 652-662.
46. Das A, McGuire PG (2003) Retinal and choroidal angiogenesis: pathophysiology and strategies for inhibition. Prog Retin Eye Res 22: 721-748.
47. Greenblatt M, Shubi P (1968) Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J Natl Cancer Inst 41: 111-124.
48. Prior BM, Yang HT, Terjung RL (2004) What makes vessels grow with exercise training? J Appl Physiol (1985) 97: 1119-1128.
49. Kleinman NR, Lewandowska K, Culp LA (1994) Tumour progression of human neuroblastoma cells tagged with a lacZ marker gene: earliest events at ectopic injection sites. Br J Cancer 69: 670-679.
50. Fotsis T, Breit S, Lutz W, Rossler J, Hatzi E, et al. (1999) Down-regulation of endothelial cell growth inhibitors by enhanced MYCN oncogene expression in human neuroblastoma cells. Eur J Biochem 263: 757-764.
51. Rossler J, Breit S, Havers W, Schweigerer L (1999) Vascular endothelial growth factor expression in human neuroblastoma: up-regulation by hypoxia. Int J Cancer 81: 113-117.
52. Eggert A, Ikegaki N, Kwiatkowski J, Zhao H, Brodeur GM, et al. (2000) High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clin Cancer Res 6: 1900-1908.
53. Chlenski A, Liu S, Cohn SL (2003) The regulation of angiogenesis in neuroblastoma. Cancer Lett 197: 47-52.
54. Lagodny J, Juttner E, Kayser G, Niemeyer CM, Rossler J (2007) Lymphangiogenesis and its regulation in human neuroblastoma. Biochem Biophys Res Commun 352: 571-577.
55. Maris JM, Matthay KK (1999) Molecular Biology of Neuroblastoma. Journal of Clinical Oncology 17: 2264.
56. Breit S, Ashman K, Wilting J, Rossler J, Hatzi E, et al. (2000) The N-myc oncogene in human neuroblastoma cells: down-regulation of an angiogenesis inhibitor identified as activin A. Cancer Res 60: 4596-4601.
57. Puppo M, Battaglia F, Ottaviano C, Delfino S, Ribatti D, et al. (2008) Topotecan inhibits vascular endothelial growth factor production and angiogenic activity induced by hypoxia in human neuroblastoma by targeting hypoxia-inducible factor-1alpha and -2alpha. Mol Cancer Ther 7: 1974-1984.
58. Beppu K, Nakamura K, Linehan WM, Rapisarda A, Thiele CJ (2005) Topotecan blocks hypoxia-inducible factor-1alpha and vascular endothelial growth factor expression induced by insulin-like growth factor-I in neuroblastoma cells. Cancer Res 65: 4775-4781.
59. Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309: 1514-1518.
60. Chen CY, Shyu AB (1995) AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem Sci 20: 465-470.
61. Claffey KP, Shih SC, Mullen A, Dziennis S, Cusick JL, et al. (1998) Identification of a human VPF/VEGF 3' untranslated region mediating hypoxia-induced mRNA stability. Mol Biol Cell 9: 469-481.
62. Singh NK, Atreya CD, Nakhasi HL (1994) Identification of calreticulin as a rubella virus RNA binding protein. Proc Natl Acad Sci U S A 91: 12770-12774.
63. Iakova P, Wang GL, Timchenko L, Michalak M, Pereira-Smith OM, et al. (2004) Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. Embo j 23: 406-417.
64. Mueller CF, Wassmann K, Berger A, Holz S, Wassmann S, et al. (2008) Differential phosphorylation of calreticulin affects AT1 receptor mRNA stability in VSMC. Biochem Biophys Res Commun 370: 669-674.
65. Ruiz de Almodovar C, Lambrechts D, Mazzone M, Carmeliet P (2009) Role and Therapeutic Potential of VEGF in the Nervous System. Physiological Reviews 89: 607-648.
66. Van Den Bosch L, Storkebaum E, Vleminckx V, Moons L, Vanopdenbosch L, et al. (2004) Effects of vascular endothelial growth factor (VEGF) on motor neuron degeneration. Neurobiol Dis 17: 21-28.
67. Tolosa L, Mir M, Asensio VJ, Olmos G, Llado J (2008) Vascular endothelial growth factor protects spinal cord motoneurons against glutamate-induced excitotoxicity via phosphatidylinositol 3-kinase. J Neurochem 105: 1080-1090.
68. Yourey PA, Gohari S, Su JL, Alderson RF (2000) Vascular endothelial cell growth factors promote the in vitro development of rat photoreceptor cells. J Neurosci 20: 6781-6788.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57215-
dc.description.abstract神經母細胞瘤 (Neuroblastoma, NB) 為經常在幼兒及胎兒被發現的一種惡性腫瘤,具有存活率低和高轉移率 (Metastasis) 之特性。儘管有多個臨床相關的預測因子已經在神經母細胞瘤中被發現,其腫瘤形成的分子機制依然不清楚。鈣網蛋白 (Calreticulin, CRT) 為一種常儲存於內質網上的伴隨蛋白 (Chaperone protein),它已經被證實在神經母細胞瘤的細胞分化以及腫瘤的形成的過程中扮演相當重要的角色。而在胃癌細胞中,它會經由促進血管內皮生長因子 (Vascular endothelial growth factor) 的表現來增強胃癌腫瘤內血管新生 (Angiogenesis) 之現象。在這篇研究當中,我們希望能夠了解鈣網蛋白和血管內皮生長因子之間的關聯性。我們先在神經母細胞瘤細胞株SK-N-DZ以及SH-SY5Y中利用表現質體和短髮夾核糖核酸去大量增進或抑制鈣網蛋白的表現,發現鈣網蛋白對於血管內皮生長因子有一正向調控之行為存在,且此現象在RNA層級和Protein層級皆有觀察到。此外,另一個已被證實在神經母細胞瘤中為血管內皮生長因子的上游的調控分子缺氧誘導因子-1α之表現量與鈣網蛋白也有一正向關之現象存在。藉由應用酵素結合免疫吸附分析的方式觀察到細胞株的培養基裡所含之血管內皮生長因子蛋白質的濃度確實會隨著鈣網蛋白過量表現或抑制而分別增加或減少。接著利用慢病毒的感染以及嘌呤霉素篩選出能經由四環黴素誘導鈣網蛋白表現之stNB-V1神經母細胞瘤細胞株。藉由異體移植的方式將此細胞株打入老鼠體內,再以餵食的方式讓小鼠攝入多西霉素來誘導鈣網蛋白之表現。結果觀察到鈣網蛋白被誘導表現之組別,其腫瘤體積會比控制組來的小上許多。此外誘導組別之腫瘤組織內的血管內皮生長因子、缺氧誘導因子-1α和分化標記分子GAP43及NSE2的表現量皆會提高,證實鈣網蛋白確實對於血管內皮生長因子以一正向調控之行為存在。zh_TW
dc.description.abstractNeuroblastoma (NB) is a childhood cancer with a low survival rate and great potential for metastasis. Even though several clinically relevant prognostic markers have been identified, the molecular mechanism underlying the tumorigenesis of NB is still unknown. Calreticulin (CRT), an endoplasmic reticulum chaperone protein, is one of the biomarkers of NB. It has been suggested to play a critical role in the tumorigenesis and differentiation in NB. In gastric cancer cells, it was also found that CRT strongly enhances angiogenesis by promoting the expression of vascular endothelial growth factors (VEGFs). In this study, we aimed to investigate the correlation between the expression of CRT and of VEGF in NB. It was found that over-expression of CRT in SK-N-DZ and SH-SY5Y cells up-regulated VEGF expression at both the mRNA and protein levels. CRT RNAi efficiently suppresses CRT expression resulting in down-regulation of VEGF. By using ELISA analysis, CRT was shown to also significantly enhance VEGF-A expression in conditioned medium. The CRT-inducible stNB-V1 cell line has been established by the lentivirus transduction system and by puromycin selection. By using this inducible cell line, we will be able to clarify the underlying mechanism of how CRT regulates neuroblastoma metastasis. This CRT inducible NB cell line was applied to xenograft experiments. We found that xenograft tumors with induced CRT expression had much smaller sizes. VEGF-A had a much higher expression level in these tumor samples compared to control tumor samples. These results indicate that CRT plays a role in regulating VEGF-A expression, which may affect angiogenesis in NB. In vivo, a xenograft analysis will also be conducted to further confirm the role of CRT in neuroblastoma metastasis.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:38:09Z (GMT). No. of bitstreams: 1
ntu-103-R00b41005-1.pdf: 1519576 bytes, checksum: 2822348e67509493e16676f0d4633c96 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures ix
Introduction 1
1. Neuroblastoma 1
1.1 Molecular characteristics of NB 1
1.2 The roles of MYCN in NB 2
1.3 Current therapeutics for NB 3
2. Calreticulin 4
2.1 General features of calreticulin 4
2.2 The functions of CRT in protein folding and Ca2+ buffering 4
2.3 The roles of CRT in immune response and cancer 5
2.4 The roles of CRT in wound healing 5
2.5 The relationships between CRT and VEGF 6
2.6 The roles of CRT in NB 7
3. VEGF and Angiogenesis in NB 8
Specific Aims 10
Material and Methods 11
1. Cell culture 11
2. CRT overexpression and knockdown in NB cell lines 11
3. CRT-inducible expression and stable cell line selection 12
4. Extract of total RNA from NB cells and Real-time PCR analysis 12
5. Western blotting for CRT and VEGF-A protein expression 13
6. ELISA for VEGF-A secreted proteins in the conditioned medium 14
7. Xenograft studies with CRT inducible cells 15
8. Statistical analysis 16
Results 17
CRT transfection efficiency in SK-N-DZ and SH-SY5Y NB cell lines 17
CRT positively regulates VEGF and other metastasis-related gene expression 17
CRT increased VEGF-A protein secretion level in condition medium 18
Establishment of CRT-inducible NB cell lines 19
CRT expression inhibited tumor size and growth in mice xenograft experiment 19
Discussion 21
Reference 25
Figures 31
dc.language.isoen
dc.subject缺氧誘導因子-1αzh_TW
dc.subject鈣網蛋白zh_TW
dc.subject血管新生zh_TW
dc.subject淋巴管新生zh_TW
dc.subject血管內皮生長因子zh_TW
dc.subject神經母細胞瘤zh_TW
dc.subjectAngiogenesisen
dc.subjectHIF-1αen
dc.subjectVascular Endothelial Growth Factoren
dc.subjectLymphangiogenesisen
dc.subjectNeuroblastomaen
dc.subjectCalreticulinen
dc.title鈣網蛋白於神經母細胞瘤細胞株內調控血管內皮生長因子機制之研究zh_TW
dc.titleCalreticulin up-regulates VEGFs expression in neuroblastoma cell linesen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許文明,廖永豐,黃元勵
dc.subject.keyword神經母細胞瘤,鈣網蛋白,血管新生,淋巴管新生,血管內皮生長因子,缺氧誘導因子-1α,zh_TW
dc.subject.keywordNeuroblastoma,Calreticulin,Angiogenesis,Lymphangiogenesis,Vascular Endothelial Growth Factor,HIF-1α,en
dc.relation.page43
dc.rights.note有償授權
dc.date.accepted2014-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生命科學系zh_TW
Appears in Collections:生命科學系

Files in This Item:
File SizeFormat 
ntu-103-1.pdf
  Restricted Access
1.48 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved