請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証(Wen-Jeng Hsueh) | |
| dc.contributor.author | Chin-Tse Lin | en |
| dc.contributor.author | 林敬哲 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:37:41Z | - |
| dc.date.available | 2019-08-13 | |
| dc.date.copyright | 2014-08-13 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-31 | |
| dc.identifier.citation | [1]C. Weisbuch, Confined Electrons and Photons: New Physics and Applications, Springer, New York (1995).
[2]J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555 (1958). [3]G. Christmann, R. Butte, E. Feltin, J.-F. Carlin, and N. Grandjean, “Room temperature polariton lasing in a gan/algan multiple quantum well microcavity,” Appl. Phys. Lett. 93, 051102 (2008). [4]S. Tsintzos, N. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, and P. Savvidis, “A gaas polariton light-emitting diode operating near room temperature,” Nature 453, 372 (2008). [5]M. Saba, C. Ciuti, J. Bloch, V. Thierry-Mieg, R. Andre, L. S. Dang, S. Kundermann, A. Mura, G. Bongiovanni, and J. Staehli, “High-temperature ultrafast polariton parametric amplification in semiconductor microcavities,” Nature 414, 731 (2001). [6]C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity,” Phys. Rev. Lett. 69, 3314 (1992). [7]R. Houdre, C. Weisbuch, R. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, “Measurement of cavity-polariton dispersion curve from angle-resolved photoluminescence experiments,” Phys. Rev. Lett. 73, 2043 (1994). [8]T. Norris, J.-K. Rhee, C.-Y. Sung, Y. Arakawa, M. Nishioka, and C. Weisbuch, “Time-resolved vacuum rabi oscillations in a semiconductor quantum microcavity,” Phys. Rev. B 50, 14663 (1994). [9]T. Fisher, A. Afshar, D. Whittaker, M. Skolnick, J. Roberts, G. Hill, and M. Pate, “Electric-field and temperature tuning of exciton-photon coupling in quantum microcavity structures,” Phys. Rev. B 51, 2600 (1995). [10]T. Fisher, A. Afshar, M. Skolnick, D. Whittaker, J. Roberts, G. Hill, and M. Pate, “Electro-optic tuning of vacuum rabi coupling in semiconductor quantum microcavity structures,” Solid State Electron 40, 493 (1996). [11]J. Tignon, P. Voisin, C. Delalande, M. Voos, R. Houdre, U. Oesterle, and R. Stanley, “From fermi's golden rule to the vacuum rabi splitting: Magnetopolaritons in a semiconductor optical microcavity,” Phys. Rev. Lett. 74, 3967 (1995). [12]T. Fisher, A. Afshar, M. Skolnick, D. Whittaker, and J. Roberts, “Vacuum rabi coupling enhancement and zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field,” Phys. Rev. B 53, R10469 (1996). [13]D. Whittaker, P. Kinsler, T. Fisher, M. Skolnick, A. Armitage, A. Afshar, M. Sturge, and J. Roberts, “Motional narrowing in semiconductor microcavities,” Phys. Rev. Lett. 77, 4792 (1996). [14]A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Raman scattering enhancement by optical confinement in a semiconductor planar microcavity,” Phys. Rev. Lett. 75, 3764 (1995). [15]A. Fainstein, B. Jusserand, and V. Thierry-Mieg, “Cavity-polariton mediated resonant raman scattering,” Phys. Rev. Lett. 78, 1576 (1997). [16]R. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, “Coupled semiconductor microcavities,” Appl. Phys. Lett. 65, 2093 (1994). [17] A. Armitage, M. Skolnick, V. Astratov, D. Whittaker, G. Panzarini, L. Andreani, T. Fisher, J. Roberts, A. Kavokin, and M. Kaliteevski, “Optically induced splitting of bright excitonic states in coupled quantum microcavities,” Phys. Rev. B 57, 14877 (1998). [18]A. Miller, D. A. Miller, and S. D. Smith, “Dynamic non-linear optical processes in semiconductors,” Adv. in Phys. 30, 697 (1981). [19]H. Gibbs, Optical Bistability: Controlling Light with Light, Elsevier (1985). [20]H. Gibbs, A. Gossard, S. McCall, A. Passner, W. Wiegmann, and T. Venkatesan, “Saturation of the free exciton resonance in gaas,” Solid State Commun. 30, 271 (1979). [21]C. Klingshirn and H. Haug, “Optical properties of highly excited direct gap semiconductors,” Physics Reports 70, 315 (1981). [22]H. Haug and S. Schmitt-Rink, “Electron theory of the optical properties of laser-excited semiconductors,” Prog.Quant. Electron 9, 3-100 (1984). [23] H. Haug and S. W. Koch, Quantum Theory of The Optical and Electronic Properties of Semiconductors, World Scientific, Singapore (2004). [24]C. Weisbuch and B. Vinter, Quantum Semiconductor Structures: Fundamentals and Applications, Elsevier (1991). [25]J. Hopfield and D. Thomas, “Polariton absorption lines,” Phys. Rev. Lett. 15, 22 (1965). [26]V. Agranovich and O. Dubovskii, “Effect of retarded interaction on the exciton spectrum in one-dimensional and two-dimensional crystals,” JETP Lett 3, 223 (1966). [27]R. Houdre, R. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, “Room-temperature cavity polaritons in a semiconductor microcavity,” Phys. Rev. B 49, 16761 (1994). [28]H. Benisty, Confined Photon Systems, Springer, Germany (1999). [29]L. C. Andreani, “Exciton-polaritons in superlattices,” Phys. Lett. A 192, 99 (1994). [30]V. Savona and F. Tassone, “Exact quantum calculation of polariton dispersion in semiconductor microcavities,” Solid State Commun. 95, 673 (1995). [31]H. Soda, K.-i. Iga, C. Kitahara, and Y. Suematsu, “Gainasp/inp surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329 (1979). [32]J. L. Jewell, Y. Lee, J. Harbison, A. Scherer, and L. Florez, “Vertical-cavity surface-emitting lasers-design, growth, fabrication, characterization,” IEEE J. Qu. El. 27, 1332 (1991). [33]S. Koch, F. Jahnke, and W. Chow, “Physics of semiconductor microcavity lasers,” Semicond. Sci. Technol. 10, 739 (1995). [34]C. Weisbuch and J. Rarity, Microcavities and Photonic Bandgaps: A Summary of Physics and Applications, Springer, Netherlands (1996). [35]H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. Brorson, and E. Ippen, “Enhanced spontaneous emission from gaas quantum wells in monolithic microcavities,” Appl. Phys. Lett. 57, 2814 (1990). [36]E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946). [37]K. Nishioka, K. Tanaka, T. Nakamura, Y. Lee, and M. Yamanishi, “Observation of cavity effect on spontaneous emission lifetime in algaas quantum microcavities using continuous tuning of emission wavelength,” Appl. Phys. Lett. 63, 2944 (1993). [38]K. J. Ebeling, Integrated Optoelectronics: Waveguide Optics, Photonics, Semiconductors, Springer-Verlag (1993). [39]H. Benisty, H. De Neve, and C. Weisbuch, “Impact of planar microcavity effects on light extraction-part i: Basic concepts and analytical trends,” IEEE J. Quant. Electron 34, 1612 (1998). [40]A. Tredicucci, Y. Chen, V. Pellegrini, M. Borger, and F. Bassani, “Optical bistability of semiconductor microcavities in the strong-coupling regime,” Phys. Rev. A 54, 3493 (1996). [41]A. Baas, J. P. Karr, H. Eleuch, and E. Giacobino, “Optical bistability in semiconductor microcavities,” Phys. Rev. A 69, 023809 (2004). [42]A. Baas, J.-P. Karr, M. Romanelli, A. Bramati, and E. Giacobino, “Optical bistability in semiconductor microcavities in the nondegenerate parametric oscillation regime: Analogy with the optical parametric oscillator,” Phys. Rev. B 70, 161307 (2004). [43]A. Demenev, A. Shchekin, A. Larionov, S. Gavrilov, V. Kulakovskii, N. Gippius, and S. Tikhodeev, “Kinetics of stimulated polariton scattering in planar microcavities: Evidence for a dynamically self-organized optical parametric oscillator,” Phys. Rev. Lett. 101, 136401 (2008). [44]H. A. Macleod, Thin Film Optical Filters, CRC Press (2001). [45]V. Savona, L. Andreani, P. Schwendimann, and A. Quattropani, “Quantum well excitons in semiconductor microcavities: Unified treatment of weak and strong coupling regimes,” Solid State Commun. 93, 733 (1995). [46]M. Załużny and C. Nalewajko, “Microcavity effect on the nonlinear intersubband response of multiple-quantum-well structures: The strong-coupling-regime,” J. Appl. Phys. 107, 123106 (2010). [47]L. C. Andreani, F. Tassone, and F. Bassani, “Radiative lifetime of free excitons in quantum wells,” Solid State Commun. 77, 641 (1991). [48]F. Tassone, F. Bassani, and L. Andreani, “Resonant and surface polaritons in quantum wells,” Il Nuovo Cimento D 12, 1673 (1990). [49]P. Yeh, Optical Waves in Layered Media, Wiley, New York (1988). [50]V. Savona, F. Tassone, C. Piermarocchi, A. Quattropani, and P. Schwendimann, “Theory of polariton photoluminescence in arbitrary semiconductor microcavity structures,” Phys. Rev. B 53, 13051 (1996). [51]J. Liao, X. Zhang, F. Xu, X. Fan, H. Wang, and N. Ming, “Theory of optical bistability in a non-linear quasi-waveguide,” Appl. Phys. B 75, 865 (2002). [52]G. Agrawal and H. Carmichael, “Optical bistability through nonlinear dispersion and absorption,” Phys. Rev. A 19, 2074 (1979). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57201 | - |
| dc.description.abstract | 本論文主要目的為研究半導體微共振腔之光學特性。首先推導了量子井激子的光學響應。接著,以轉移矩陣法,分析共振腔模態以及不同結構的微共振腔特性。當加入量子井後,共振腔模態和激子的耦合會形成電磁極化子模態,而在頻譜上產生拉比分裂的特性。針對電磁極化子模態,分別探討入射角度、耦合強度、量子井數目以及激子頻率調變所產生的影響。另外,也會討論簡單的非線性性質,利用Fabry-Perot模型與平均場方法推出解析解,以此來討論當入射光場強度改變時,對微共振腔內部光場強度以及吸收之影響。由結果可發現,共振腔模態與激子在色散關係圖中的交點耦合強度最強,而隨著入射角度、量子井數目或激子頻率的改變,都會讓電磁極化子模態的特性變的不明顯。此外,入射光場強度變大時,也會造成相似結果。 | zh_TW |
| dc.description.abstract | The main purpose of this thesis is to investigate the optical properties of semiconductor microcavities. First, the optical response of quantum well excitons is derived. Base on the transfer matrix method, characteristics of the cavity mode and microcavities which have different structures are analysed. After the influence of quantum well is considered, the coupling of the cavity mode and excitons forms the polariton modes which results in the Rabi splitting in the spectrum. The effects on the polariton modes in terms of incident angle, coupling strength, quantum well number and exciton modulation have been discussed. Moreover, a simple nonlinear phenomena is also considered. With the Fabry-Perot model and the mean-field approach, an analytical solution is obtained. This is useful for studying the effect of the incident field intensity on the field intensity and the absorpsion in microcavities. According to the results, the crosspoint of the cavity mode and excitons in the dispersion relation has the most intense coupling strength. With changes of incident angle, quantum well number or exciton frequency, the properties of polariton modes will become less significant. Besides, if the incident field intensity turns stronger, the similar results will be found. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:37:41Z (GMT). No. of bitstreams: 1 ntu-103-R01525030-1.pdf: 857097 bytes, checksum: 57c20a31be09eb9ee18aea1ab51cf136 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 v 表目錄 viii 符號表 ix 第一章 導論 1 1.1 背景與研究動機 1 1.2 歷史文獻回顧 2 1.3 論文架構 3 第二章 半導體微共振腔之原理 5 2.1 電磁波理論 5 2.1.1 馬克士威爾方程式 5 2.1.2 邊界條件 7 2.2 反射鏡 8 2.2.1 四分之一波長堆疊 8 2.2.2 一般塊材 9 2.3 量子井 10 2.3.1 激子與電磁極化子 10 2.3.2 量子井之光學響應 11 2.4 微共振腔 16 第三章 半導體微共振腔之分析模型 20 3.1 轉移矩陣法 20 3.1.1 穿透、反射與吸收 22 3.1.2 電磁極化子之色散關係式 23 3.1.3 電場模態分佈 23 3.2 Fabry-Perot模型與平均場方法 24 第四章 半導體微共振腔之光學特性 30 4.1 四分之一波長堆疊反射鏡之微共振腔 30 4.1.1 改變入射角度之影響 32 4.1.2 耦合強度之變化 33 4.1.3 改變量子井數目之影響 34 4.1.4 激子頻率之調變 34 4.2 光場強度之影響 35 第五章 結論與未來展望 59 5.1 結論 59 5.2 未來展望 60 參考文獻 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 微共振腔 | zh_TW |
| dc.subject | 非線性 | zh_TW |
| dc.subject | 轉移矩陣 | zh_TW |
| dc.subject | 電磁極化子 | zh_TW |
| dc.subject | 量子井 | zh_TW |
| dc.subject | quantum well | en |
| dc.subject | transfer matrix | en |
| dc.subject | nonlinear | en |
| dc.subject | microcavity | en |
| dc.subject | polariton | en |
| dc.title | 半導體微共振腔之光學特性 | zh_TW |
| dc.title | Optical Properties of Semiconductor Microcavities | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文中(Wen-Jong Wu),郭鴻飛(Hung-Fei Kuo),黃俊穎(Chun-Ying Huang) | |
| dc.subject.keyword | 微共振腔,量子井,電磁極化子,轉移矩陣,非線性, | zh_TW |
| dc.subject.keyword | microcavity,quantum well,polariton,transfer matrix,nonlinear, | en |
| dc.relation.page | 66 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-07-31 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 837.01 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
