Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorHsuan-Han Maen
dc.contributor.author馬瑄含zh_TW
dc.date.accessioned2021-06-16T06:37:40Z-
dc.date.available2019-08-14
dc.date.copyright2014-08-14
dc.date.issued2014
dc.date.submitted2014-07-31
dc.identifier.citationReferences
[1] E.D. Sloan, Clathrate Hydrate of Natural Gases: Revised and Expanded., in 1998.
[2] K.A. Kvenvolden, Gas hydrate and humans, in: G.D. Holder, P.R. Bishnoi (Eds.) Ann Ny Acad Sci, 2000, pp. 17-22.
[3] K.A. Kvenvolden, Proceedings of the National Academy of Sciences of the United States of America, 96 (1999) 3420-3426.
[4] T. Komai, S.P. Kang, J.H. Yoon, Y. Yamamoto, T. Kawamura, M. Ohtake, Journal of Physical Chemistry B, 108 (2004) 8062-8068.
[5] E.D. Sloan, Nature, 426 (2003) 353-359.
[6] D.W. Davidson, Water: A Comprehensive Treatise, Plenum, New York, 1973.
[7] D.W. Davidson, M.A. Desando, S.R. Gough, Y.P. Handa, C.I. Ratcliffe, J.A. Ripmeester, J.S. Tse, J Inclusion Phenom, 5 (1987) 219-223.
[8] G.A. Jeffrey, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1 (1984) 211-222.
[9] G.A. Jeffrey, T. Jordan, R.K. Mcmullan, Acta Crystallogr, S 21 (1966) A118-&.
[10] M.M. Mooijer-van den Heuvel, R. Witteman, C.J. Peters, Fluid Phase Equilibria, 182 (2001) 97-110.
[11] K. Nasrifar, M.M. Mooijer-Van Den Heuvel, C.J. Peters, S. Ayatollahi, M. Moshfeghian, Fluid Phase Equilibria, 204 (2003) 1-14.
[12] J.A. Ripmeester, C.I. Ratcliffe, J.S. Tse, J Chem Soc Farad T 1, 84 (1988) 3731-3745.
[13] J.A. Ripmeester, J.S. Tse, C.I. Ratcliffe, B.M. Powell, Nature, 325 (1987) 135-136.
[14] A.P. Mehta, E.D. Sloan, Gas Processors Association - Seventy-Fifth Annual Convention, Proceedings, (1996) 27-37.
[15] K.A. Udachin, C.I. Ratcliffe, G.D. Enright, J.A. Ripmeester, Supramol Chem, 8 (1997) 173-176.
[16] I.M. Chou, A. Sharma, R.C. Burruss, J.F. Shu, H.K. Mao, R.J. Hemley, A.F. Goncharov, L.A. Stern, S.H. Kirby, Proceedings of the National Academy of Sciences of the United States of America, 97 (2000) 13484-13487.
[17] M.R. Walsh, C.A. Koh, E.D. Sloan, A.K. Sum, D.T. Wu, Science, 326 (2009) 1095-1098.
[18] T.A. Strobel, K.C. Hester, C.A. Koh, A.K. Sum, E.D. Sloan, Chemical Physics Letters, 478 (2009) 97-109.
[19] K. Kaiho, T. Arinobu, R. Ishiwatari, H.E.G. Morgans, H. Okada, N. Takeda, K. Tazaki, G.P. Zhou, Y. Kajiwara, R. Matsumoto, A. Hirai, N. Niitsuma, H. Wada, Paleoceanography, 11 (1996) 447-465.
[20] L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, E.D. Sloan, Science, 306 (2004) 469-471.
[21] W.L. Mao, H.K. Mao, A.F. Goncharov, V.V. Struzhkin, Q.Z. Guo, J.Z. Hu, J.F. Shu, R.J. Hemley, M. Somayazulu, Y.S. Zhao, Science, 297 (2002) 2247-2249.
[22] V.M. Vorotyntsev, V.M. Malyshev, P.G. Taraburov, G.M. Mochalov, Theoretical Foundations of Chemical Engineering, 35 (2001) 513-515.
[23] T. Ogawa, T. Ito, K. Watanabe, K.-i. Tahara, R. Hiraoka, J.-i. Ochiai, R. Ohmura, Y.H. Mori, Applied Thermal Engineering, 26 (2006) 2157-2167.
[24] C.R. Fisher, I.R. MacDonald, R. Sassen, C.M. Young, S.A. Macko, S. Hourdez, R.S. Carney, S. Joye, E. McMullin, Naturwissenschaften, 87 (2000) 184-187.
[25] D.J. Milton, Science, 183 (1974) 654-656.
[26] C.A. Koh, A.K. Sum, E.D. Sloan, J Appl Phys, 106 (2009).
[27] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, Journal of Physical Chemistry B, 115 (2011) 15295-15302.
[28] K. Ohgaki, K. Takano, H. Sangawa, T. Matsubara, S. Nakano, Journal of Chemical Engineering of Japan, 29 (1996) 478-483.
[29] E.D. Sloan, F. Fleyfel, AIChE J., 37 (1991) 1281-1292.
[30] R.L. Christiansen, E.D. Sloan, MECHANISMS AND KINETICS OF HYDRATE FORMATION, in: E.D. Sloan, J. Happel, M.A. Hnatow (Eds.) International Conference on Natural Gas Hydrates, 1994, pp. 283-305.
[31] R. Radhakrishnan, B.L. Trout, Journal of Chemical Physics, 117 (2002) 1786-1796.
[32] L.C. Jacobson, W. Hujo, V. Molinero, Journal of Physical Chemistry B, 114 (2010) 13796-13807.
[33] L.C. Jacobson, W. Hujo, V. Molinero, J. Am. Chem. Soc., 132 (2010) 11806-11811.
[34] L.C. Jacobson, M. Matsumoto, V. Molinero, Journal of Chemical Physics, 135 (2011).
[35] M. Wu, S. Wang, H. Liu, J Nat Gas Chem, 16 (2007) 81-85.
[36] B. Kvamme, G. Huseby, O.K. Forrisdahl, Mol Phys, 90 (1997) 979-991.
[37] R. Larsen, C.A. Knight, E.D. Sloan, Fluid Phase Equilibria, 150 (1998) 353-360.
[38] E.M. Freer, E.D. Sloan, Ann Ny Acad Sci, 912 (2000) 651-657.
[39] C.A. Koh, R.E. Westacott, W. Zhang, K. Hirachand, J.L. Creek, A.K. Soper, Fluid Phase Equilibria, 194 (2002) 143-151.
[40] P.-W. Tsai, S.T. Lin, The effect of tert-Butanol on the Growth Mechanism of Gas Hydrates via Molecular Dynamics Simulation, in: National Taiwan University Master Thesis, 2013.
[41] J.L. Deroo, C.J. Peters, R.N. Lichtenthaler, G.A.M. Diepen, AIChE J., 29 (1983) 651-657.
[42] M.D. Jager, E.D. Sloan, Fluid Phase Equilibria, 185 (2001) 89-99.
[43] Y. Seo, H. Lee, Journal of Physical Chemistry B, 107 (2003) 889-894.
[44] A.H. Mohammadi, W. Afzal, D. Richon, J. Chem. Thermodyn., 40 (2008) 1693-1697.
[45] Y. Qi, W. Wu, Y. Liu, Y. Xie, X. Chen, Fluid Phase Equilibria, 325 (2012) 6-10.
[46] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, Journal of Physical Chemistry B, 116 (2012) 14115-14125.
[47] P.M. Rodger, T.R. Forester, W. Smith, Fluid Phase Equilibria, 116 (1996) 326-332.
[48] L.C. Jacobson, V. Molinero, J. Am. Chem. Soc., 133 (2011) 6458-6463.
[49] S. Liang, P.G. Kusalik, Journal of Physical Chemistry B, 117 (2013) 1403-1410.
[50] S. Liang, P.G. Kusalik, Chemical Physics Letters, 494 (2010) 123-133.
[51] S. Sarupria, P.G. Debenedetti, Journal of Physical Chemistry Letters, 3 (2012) 2942-2947.
[52] B.C. Knott, V. Molinero, M.F. Doherty, B. Peters, J. Am. Chem. Soc., 134 (2012) 19544-19547.
[53] J.J. Burton, Acta Metallurgica, 21 (1973) 1225-1232.
[54] B.N. Hale, P.L.M. Plummer, Bulletin of the American Physical Society, 18 (1973) 608-609.
[55] M.C. Tobin, Journal of Polymer Science Part B-Polymer Physics, 12 (1974) 399-406.
[56] B. Kvamme, T. Kuznetsova, Fluid Phase Equilibria, 217 (2004) 217-226.
[57] Y.X. Qi, W.D. Wu, Y.F. Liu, Y.M. Xie, X. Chen, Fluid Phase Equilibria, 325 (2012) 6-10.
[58] R.W. Hockney, S.P. Goel, J.W. Eastwood, Chemical Physics Letters, 21 (1973) 589-591.
[59] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, Journal of Chemical Physics, 76 (1982) 637-649.
[60] L. Verlet, D. Levesque, Physica, 36 (1967) 254-&.
[61] P.P. Ewald, Ann Phys-Berlin, 64 (1921) 253-287.
[62] A.Y. Toukmaji, J.A. Board Jr, Computer Physics Communications, 95 (1996) 73-92.
[63] C.H.K. Kittel, Thermal Physics, 2nd W.H. Freeman and Company, San Francisco, 1980.
[64] L.D.L. Landau, E.M., Statistical Physics. Pergamon Press., 1980.
[65] S. Nose, Journal of Chemical Physics, 81 (1984) 511-519.
[66] W.G. Hoover, Phys Rev A, 31 (1985) 1695-1697.
[67] H.J.C. Berendsen, J.P.M. Postma, W.F. Vangunsteren, A. Dinola, J.R. Haak, Journal of Chemical Physics, 81 (1984) 3684-3690.
[68] H.J.C. Berendsen, Transport Properties Computed by Linear Response through Weak Coupling to a Bath, in: M. Meyer, V. Pontikis (Eds.) Computer Simulation in Materials Science, Springer Netherlands, 1991, pp. 139-155.
[69] B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Journal of Chemical Theory and Computation, 4 (2008) 435-447.
[70] J.D. Bernal, R.H. Fowler, Journal of Chemical Physics, 1 (1933) 515-548.
[71] H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-Gordon, The Journal of chemical physics, 120 (2004) 9665-9678.
[72] W. Damm, A. Frontera, J. TiradoRives, W.L. Jorgensen, Journal of Computational Chemistry, 18 (1997) 1955-1970.
[73] W.L. Jorgensen, D.S. Maxwell, J. TiradoRives, J. Am. Chem. Soc., 118 (1996) 11225-11236.
[74] N.A. McDonald, W.L. Jorgensen, Journal of Physical Chemistry B, 102 (1998) 8049-8059.
[75] J. Chandrasekhar, D.C. Spellmeyer, W.L. Jorgensen, J. Am. Chem. Soc., 106 (1984) 903-910.
[76] S. Miyamoto, P.A. Kollman, Journal of Computational Chemistry, 13 (1992) 952-962.
[77] U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, Journal of Chemical Physics, 103 (1995) 8577-8593.
[78] J.W. Eastwood, Journal of Computational Physics, 18 (1975) 1-20.
[79] J.W. Eastwood, R.W. Hockney, J Comp Physiol, 16 (1974) 342-359.
[80] J.W. Eastwood, R.W. Hockney, D.N. Lawrence, Computer Physics Communications, 19 (1980) 215-261.
[81] Y.-T. Tung, L.-J. Chen, Y.-P. Chen, S.-T. Lin, Journal of Physical Chemistry B, 114 (2010) 10804-10813.
[82] Z.T. Cao, J.W. Tester, K.A. Sparks, B.L. Trout, Journal of Physical Chemistry B, 105 (2001) 10950-10960.
[83] Z.T. Cao, J.W. Tester, B.L. Trout, Journal of Chemical Physics, 115 (2001) 2550-2559.
[84] L.A. Baez, P. Clancy, Computer-simulation of the crystal-growth and dissolution of natural-gas hydrates in: E.D. Sloan, J. Happel, M.A. Hnatow (Eds.) International Conference on Natural Gas Hydrates, 1994, pp. 177-186.
[85] C. Moon, R.W. Hawtin, P.M. Rodger, Faraday Discussions, 136 (2007) 367-382.
[86] A. Luzar, D. Chandler, Journal of Chemical Physics, 98 (1993) 8160-8173.
[87] J.F. Dillenburg, P.C. Nelson, Inform Process Lett, 45 (1993) 5-10.
[88] R.E. Korf, Artif. Intell., 27 (1985) 97-109.
[89] R. Tarjan, Depth-first search and linear graph algorithms, in: Switching and Automata Theory, 1971., 12th Annual Symposium on, 1971, pp. 114-121.
[90] N. Jacobson, Trans. Am. Math. Soc., 57 (1945) 228-245.
[91] M.D. Jager, C.J. Peters, E.D. Sloan, Fluid Phase Equilibria, 193 (2002) 17-28.
[92] M.K. Hsieh, W.Y. Ting, Y.P. Chen, P.C. Chen, S.T. Lin, L.J. Chen, Fluid Phase Equilibria, 325 (2012) 80-89.
[93] Z.H. Duan, S.D. Mao, Geochim. Cosmochim. Acta, 70 (2006) 3369-3386.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57200-
dc.description.abstract甲烷水合物成核因素主要來自過冷和過飽和效應。為研究純水成核的濃度效應,我們建立含有水分子及甲烷分子的勻相系統和兩相系統,並且模擬壓力在50MPa及四個溫度,分別是250K、270K、275K和280K,藉此探討成核的溫度效應。成核的過程可以分為三階段,首先是成核前的時間稱為誘導時間,當核超過臨界大小時,會有快速成長期,最後系統的自由水分子減少,系統內的Blob會重組形成結晶結構。誘導時間為成核所需消耗的時間可以從系統內的位能和F4參數隨時間的變化獲得,它會隨濃度增加或是溫度降低而變短。成核的最終結構包含了512, 51262, 51263, 51264 其中51263是不存在於sI和sII的結構中的水籠子,但可以成為sI和sII的介面,而且結晶度也會受到濃度和溫度的影響。
氯化鈉不僅是熱力學的抑制劑也是動力學的抑制劑。在我們的模擬結果中發現氯化鈉離子附近的水分子會因帶電離子影響而有結構變化。成核前要排開氯化鈉進行成核所以誘導時間比較長,Blob的快速成長期也因為氯化鈉而速率下降,最後少部分的氯化鈉會形成水籠子,大部分的氯化鈉會析出。當氯化鈉水溶液濃度增加誘導時間會變長而Blob 的成長速率會下降。
zh_TW
dc.description.abstractThe key factors that affect the nucleation of methane hydrates from liquid water and methane gas are supersaturation and supercooling. In order to study the effect of concentration of methane gas in pure water, we built two phase model and homogeneous model containing liquid water and methane gas. Simulation were performed at pressure 50MPa and four temperatures (Tsim=250K 270K 275K 280K) to study the effect of supercooling (ΔTsub= Tm-Tsim) on nucleation. The induction time, determined based on the evolution of the potential energy and a four-body structural order parameter (F4), is found to decrease with increasing supersaturation of methane in water and supercooling. The resulting structure after nucleation and growth is a combination of normal cages 512, 51262, 51263, 51264. Cage 51263 is not native to the sI and sII crystals, but the present at the interface between sI and sII. The crystallinity is also found to be affected by supersaturation and supercooling of the system.
Sodium chloride is not only the thermodynamic inhibitor but the kinetic inhibitor. From our simulation results, the induction time increases and the blob growth rate decreases when the NaCl is added. The local structure of water molecules changed by NaCl results in the lower concentration of methane gas in aqueous solution.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:37:40Z (GMT). No. of bitstreams: 1
ntu-103-R01524052-1.pdf: 22819212 bytes, checksum: 709c91aca2e221e9dfc4b0151b8a0b24 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsCONTENTS
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Clathrate hydrates 1
1.2 Structures of Clathrate Hydrates 2
1.3 Application of Clathrate Hydrate 4
1.4 Nucleation Mechanism 6
1.5 Additives – Promoters & Inhibitors 8
1.6 Computational Molecular Simulation 9
1.7 Motivations 10
Chapter 2 Theory 12
2.1 Molecular Dynamics Simulation 12
2.2 Integration of Equation of Motion 13
2.3 Force Field 14
2.3.1 Non-Bond Terms 15
2.3.2 Valence Terms 17
2.4 System Controls 18
2.5 Temperature Thermostat 18
2.6 Pressure Barostat 19
Chapter 3 Computational Details 21
3.1 Simulation Models & Settings 21
3.2 Models 22
3.2.1 Models for melting point of pure methane hydrates 22
3.2.2 Model for melting point of methane hydrates with NaCl 23
3.2.3 Models for Nucleation of pure methane hydrates 24
3.2.4 Models for Nucleation of Methane Hydrates in Aqueous Solution of Sodium Chloride 24
3.3 Force Field 25
3.4 Four Body Order Parameter 27
3.5 Hydrogen Bond Identification 27
3.6 Cage Identification 28
3.7 Hydrate Structure Determination 30
3.8 Dipole Moment 30
Chapter 4 Results and Discussion 32
4.1 Thermodynamic Properties 32
4.1.1 Melting Point of Pure Methane Clathrate Hydrate 32
4.1.2 Melting Point of Methane Clathrate Hydrate in Aqueous Solution of Sodium Chloride 35
4.1.3 Solubility of methane in water 36
4.1.4 Solubility of methane in brine 38
4.2 Kinetic Properties 39
4.2.1 Nucleation in Pure Water System 40
4.2.2 Nucleation in Aqueous Solution of Sodium Chloride System 59
Chapter 5 Conclusions 80
References 82
dc.language.isoen
dc.subject成核zh_TW
dc.subject甲烷水合物zh_TW
dc.subject分子動力學模擬zh_TW
dc.subjectmethane hydrateen
dc.subjectnucleationen
dc.subjectmolecular dynamics simulationen
dc.title利用分子模擬探討溫度、溶解度及鹽對甲烷水合物成核機制的影響zh_TW
dc.titleThe Primary Nucleation of Methane Hydrates and the Influence of Temperature, Gas Solubility, and Salinity via Molecular Dynamics Simulationen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳延平(Yan-Ping Chen),諶玉真(Yu-Jane Sheng),陳立仁(Li-Jen Chen)
dc.subject.keyword甲烷水合物,成核,分子動力學模擬,zh_TW
dc.subject.keywordmethane hydrate,nucleation,molecular dynamics simulation,en
dc.relation.page86
dc.rights.note有償授權
dc.date.accepted2014-07-31
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
22.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved