Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57161
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李篤中(Duu-Jong Lee)
dc.contributor.authorYu-Han Chenen
dc.contributor.author陳郁涵zh_TW
dc.date.accessioned2021-06-16T06:36:32Z-
dc.date.available2020-07-28
dc.date.copyright2020-07-28
dc.date.issued2020
dc.date.submitted2020-07-23
dc.identifier.citation1. Dixit, D. and C. Ghoroi, Role of randomly distributed nanoscale roughness for designing highly hydrophobic particle surface without using low surface energy coating. Journal of Colloid and Interface Science, 2020. 564: p. 8-18.
2. Qiu, S., et al., Wetting dynamics and surface energy components of single carbon fibers. Journal of Colloid and Interface Science, 2019. 557: p. 349-356.
3. Arunachalam, S., et al., Assessing omniphobicity by immersion. Journal of Colloid and Interface Science, 2019. 534: p. 156-162.
4. Tuteja, A., et al., Robust omniphobic surfaces. Proceedings of the National Academy of Sciences of the United States of America, 2008. 105(47): p. 18200-18205.
5. van Oss, C.J., M.K. Chaudhury, and R.J. Good, Monopolar surfaces. Advances in Colloid and Interface Science, 1987. 28: p. 35-64.
6. Chen, M., et al., Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder. Science in China, Series B: Chemistry, 2008. 51(9): p. 848-852.
7. Liu, Y.-Y., C.-C. Cheng, and D.-J. Lee, Synthesis of low surface-energy polyepichlorohydrin triazoles thin film. Journal of Colloid and Interface Science, 2019. 539: p. 481-489.
8. Chen, L.-H., et al., Omniphobic membranes for direct contact membrane distillation: Effective deposition of zinc oxide nanoparticles. Desalination, 2018. 428: p. 255-263.
9. Berret, J.F., et al., Fluorocarbon associative polymers. Current Opinion in Colloid and Interface Science, 2003. 8(3): p. 296-306.
10. Ghosh Chaudhuri, R. and S. Paria, The wettability of PTFE and glass surfaces by nanofluids. Journal of Colloid and Interface Science, 2014. 434: p. 141-151.
11. Dalvi, V.H. and P.J. Rossky, Molecular origins of fluorocarbon hydrophobicity. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(31): p. 13603-13607.
12. Tokuda, K., et al., Simple method for lowering poly(methyl methacrylate) surface energy with fluorination. Polymer Journal, 2015. 47(1): p. 66-70.
13. Boo, C., S. Hong, and M. Elimelech, Relating Organic Fouling in Membrane Distillation to Intermolecular Adhesion Forces and Interfacial Surface Energies. Environmental Science Technology, 2018. 52(24): p. 14198-14207.
14. Feng, S., et al., Progress and perspectives in PTFE membrane: Preparation, modification, and applications. Journal of Membrane Science, 2018. 549: p. 332-349.
15. Lindstrom, A.B., M.J. Strynar, and E.L. Libelo, Polyfluorinated Compounds: Past, Present, and Future. Environmental Science Technology, 2011. 45(19): p. 7954-7961.
16. Callau, L., J.A. Reina, and A. Mantecón, Synthesis and crosslinking of vinyl-terminated biphenyl and naphthalene liquid-crystalline poly(epichlorohydrin) derivatives: Effect of nonmesogenic nonvinylic units on the mesogenic properties. Journal of Polymer Science, Part A: Polymer Chemistry, 2002. 40(22): p. 3893-3908.
17. Brocas, A.L., et al., Controlled synthesis of polyepichlorohydrin with pendant cyclic carbonate functions for isocyanate-free polyurethane networks. Journal of Polymer Science, Part A: Polymer Chemistry, 2011. 49(12): p. 2677-2684.
18. Tornøe, C.W., C. Christensen, and M. Meldal, Peptidotriazoles on solid phase: [1,2,3]-Triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. Journal of Organic Chemistry, 2002. 67(9): p. 3057-3064.
19. Rostovtsev, V.V., et al., A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective 'ligation' of azides and terminal alkynes. Angewandte Chemie - International Edition, 2002. 41(14): p. 2596-2599.
20. Kolb, H.C., M.G. Finn, and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 2001. 40(11): p. 2004-2021.
21. Hein, C.D., X.-M. Liu, and D. Wang, Click chemistry, a powerful tool for pharmaceutical sciences. Pharmaceutical research, 2008. 25(10): p. 2216-2230.
22. Liu, X.-M., A. Thakur, and D. Wang, Efficient Synthesis of Linear Multifunctional Poly(ethylene glycol) by Copper(I)-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Biomacromolecules, 2007. 8(9): p. 2653-2658.
23. Golas, P.L. and K. Matyjaszewski, Marrying click chemistry with polymerization: Expanding the scope of polymeric materials. Chemical Society Reviews, 2010. 39(4): p. 1338-1354.
24. Golas, P.L. and K. Matyjaszewski, Click Chemistry and ATRP: A Beneficial Union for the Preparation of Functional Materials. QSAR Combinatorial Science, 2007. 26(11‐12): p. 1116-1134.
25. Li, S., et al., Copper-catalyzed click reaction on/in live cells. Chemical Science, 2017. 8(3): p. 2107-2114.
26. Yuan, Y. and G. Liang, A biocompatible, highly efficient click reaction and its applications. Organic Biomolecular Chemistry, 2014. 12(6): p. 865-871.
27. Marshall, S.J., et al., A review of adhesion science. Dental Materials, 2010. 26(2): p. e11-e16.
28. Van Krevelen, D.W. and K. Te Nijenhuis, Chapter 8 - Interfacial Energy Properties, in Properties of Polymers (Fourth Edition), D.W. Van Krevelen and K. Te Nijenhuis, Editors. 2009, Elsevier: Amsterdam. p. 229-244.
29. Ramon Pericet-Camara, et al., HYSTERETIC BEHAVIOUR OF STATIC AND DYNAMIC CONTACT ANGLES ON VARIOUS POLYMER SURFACES: A COMPARATIVE STUDY.
30. Ras, R. and X. Tian, Superhydrophobic and Superoleophobic Nanostructured Cellulose and Cellulose Composites. 2017. p. 731-760.
31. Owens, D.K. and R.C. Wendt, Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969. 13(8): p. 1741-1747.
32. Wu, S., Calculation of interfacial tension in polymer systems. Journal of Polymer Science Part C: Polymer Symposia, 1971. 34(1): p. 19-30.
33. Hejda, F., P. Solar, and J. Kousal, Surface free energy determination by contact angle measurements - A comparison of various approaches. Proceedings of Contributed Papers Part III, 2010: p. 25-30.
34. Song, K., et al., Interaction of Surface Energy Components between Solid and Liquid on Wettability, and Its Application to Textile Anti-Wetting Finish. Polymers, 2019. 11(3): p. 498.
35. Fowkes, F.M., ATTRACTIVE FORCES AT INTERFACES. Industrial Engineering Chemistry, 1964. 56(12): p. 40-52.
36. Feng, L., et al., Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008. 24(8): p. 4114-4119.
37. Chu, Z. and S. Seeger, Superamphiphobic surfaces. Chemical Society Reviews, 2014. 43(8): p. 2784-2798.
38. Yeh, K.-Y., et al., Observation of the rose petal effect over single- and dual-scale roughness surfaces. Nanotechnology, 2014. 25(34): p. 345303.
39. Nguyen, S.H., et al., Natural insect and plant micro-/nanostructsured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules, 2014. 19(9): p. 13614-13630.
40. Yong, J., et al., Superoleophobic surfaces. Chemical Society Reviews, 2017. 46(14): p. 4168-4217.
41. Li, P., et al., Unidirectional Droplet Transport on the Biofabricated Butterfly Wing. Langmuir, 2018. 34(41): p. 12482-12487.
42. Helbig, R., et al., Smart skin patterns protect springtails. PloS one, 2011. 6(9): p. e25105-e25105.
43. Feng, L., et al., Super-hydrophobic surfaces: From natural to artificial. Advanced Materials, 2002. 14(24): p. 1857-1860.
44. Zheng, Z., et al., Superhydrophobic poly(vinylidene fluoride) film fabricated by alkali treatment enhancing chemical bath deposition. Applied Surface Science, 2010. 256(7): p. 2061-2065.
45. Sukamanchi, R., D. Mathew, and S. Kumar K.S, Durable Superhydrophobic Particles Mimicking Leafhopper Surface: Superoleophilicity and Very Low Surface Energy. ACS Sustainable Chemistry Engineering, 2017. 5(1): p. 252-260.
46. Lu, Y., et al., Synthesis and characterization of omniphobic surfaces with thermal, mechanical and chemical stability. RSC Advances, 2016. 6(108): p. 106491-106499.
47. Zhai, J., et al., Discovery of super amphiphobic properties of aligned carbon nanotube films. Wuli, 2002. 31(8): p. 483-486.
48. Li, S., et al., Super-Hydrophobicity of Large-Area Honeycomb-Like Aligned Carbon Nanotubes. The Journal of Physical Chemistry B, 2002. 106(36): p. 9274-9276.
49. Feng, L., et al., Creation of a Superhydrophobic Surface from an Amphiphilic Polymer. Angewandte Chemie International Edition, 2003. 42(7): p. 800-802.
50. Feng, L., et al., Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angewandte Chemie - International Edition, 2002. 41(7): p. 1221-1223.
51. Li, H., et al., Super-'amphiphobic' aligned carbon nanotube films. Angewandte Chemie - International Edition, 2001. 40(9): p. 1743-1746.
52. Domingues, E.M., et al., Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids. Nature Communications, 2018. 9(1).
53. Domingues, E.M., S. Arunachalam, and H. Mishra, Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces. ACS Applied Materials Interfaces, 2017. 9(25): p. 21532-21538.
54. Cheng, Z., et al., From petal effect to lotus effect: a facile solution immersion process for the fabrication of super-hydrophobic surfaces with controlled adhesion. Nanoscale, 2013. 5(7): p. 2776-2783.
55. Ebert, D. and B. Bhushan, Wear-resistant rose petal-effect surfaces with superhydrophobicity and high droplet adhesion using hydrophobic and hydrophilic nanoparticles. Journal of Colloid and Interface Science, 2012. 384(1): p. 182-188.
56. Rawal, A., et al., Designing superhydrophobic disordered arrays of fibers with hierarchical roughness and low-surface-energy. Applied Surface Science, 2016. 389: p. 469-476.
57. Hu, H., et al., Effect of secondary regular microstructure on the micro-flows in nano-channel with low surface energy. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2014. 50(12): p. 165-170.
58. Boo, C., J. Lee, and M. Elimelech, Omniphobic Polyvinylidene Fluoride (PVDF) Membrane for Desalination of Shale Gas Produced Water by Membrane Distillation. Environmental Science Technology, 2016. 50(22): p. 12275-12282.
59. Jin, M., et al., Super-hydrophobic PDMS surface with ultra-low adhesive force. Macromolecular Rapid Communications, 2005. 26(22): p. 1805-1809.
60. Fu, X., et al., A titanium-nickel composite mold with low surface energy for thermal nanoimprint lithography. Materials Letters, 2020. 260.
61. Ramirez, S.M., et al., Incompletely Condensed Fluoroalkyl Silsesquioxanes and Derivatives: Precursors for Low Surface Energy Materials. Journal of the American Chemical Society, 2011. 133(50): p. 20084-20087.
62. Agustín-Sáenz, C., M. Machado, and A. Tercjak, Polyfluoroalkyl-silica porous coatings with high antireflection properties and low surface free energy for glass in solar energy application. Applied Surface Science, 2019: p. 144864.
63. Al-Maliki, H., Adhesive and tribological behaviour of cold atmospheric plasma-treated polymer surfaces. 2018.
64. Wang, S. and R.E. Marchant, Fluorocarbon surfactant polymers: Effect of perfluorocarbon branch density on surface active properties. Macromolecules, 2004. 37(9): p. 3353-3359.
65. Land, M., et al., What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidence, 2018. 7(1): p. 4.
66. Owen, M.J., Low Surface Energy Inorganic Polymers. Comments on Inorganic Chemistry, 1988. 7(4): p. 195-213.
67. Perutz, S., et al., Synthesis and Surface Energy Measurement of Semi-Fluorinated, Low-Energy Surfaces. Macromolecules, 1998. 31(13): p. 4272-4276.
68. Zhu, K., et al., Improvement of anti-icing properties of low surface energy coatings by introducing phase-change microcapsules. Polymer Engineering and Science, 2018. 58(6): p. 973-979.
69. Wang, C.F., et al., Low-surface-free-energy materials based on polybenzoxazines. Angewandte Chemie - International Edition, 2006. 45(14): p. 2248-2251.
70. Fu, H.K., et al., Effect of an organically modified nanoclay on low-surface-energy materials of polybenzoxazine. Macromolecular Rapid Communications, 2008. 29(14): p. 1216-1220.
71. Kao, T.-H., et al., Low-surface-free-energy polybenzoxazine/polyacrylonitrile fibers for biononfouling membrane. Polymer, 2013. 54(1): p. 258-268.
72. Tsibouklis, J., et al., Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials, 1999. 20(13): p. 1229-1235.
73. Lei, H., et al., Fluorine-free coating with low surface energy and anti-biofouling properties. Progress in Organic Coatings, 2018. 124: p. 158-164.
74. Hong, X., X. Gao, and L. Jiang, Application of Superhydrophobic Surface with High Adhesive Force in No Lost Transport of Superparamagnetic Microdroplet. Journal of the American Chemical Society, 2007. 129(6): p. 1478-1479.
75. Winkleman, A., et al., Immobilizing a Drop of Water: Fabricating Highly Hydrophobic Surfaces that Pin Water Droplets. Nano Letters, 2008. 8(4): p. 1241-1245.
76. Yilbas, B.S., A. Al-Sharafi, and H. Ali, Chapter 3 - Surfaces for Self-Cleaning, in Self-Cleaning of Surfaces and Water Droplet Mobility, B.S. Yilbas, A. Al-Sharafi, and H. Ali, Editors. 2019, Elsevier. p. 45-98.
77. Ahmad, M., et al., Stannic chloride-para toluene sulfonic acid as a novel catalyst-co-catalyst system for the designing of hydroxyl terminated polyepichlorohydrin polymer: Synthesis and characterization. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 151: p. 164-173.
78. Darsy, G., et al., Monitoring a polycycloaddition by the combination of dynamic rheology and FTIR spectroscopy. Polymer, 2015. 79: p. 283-289.
79. Bhagyasree, J.B., et al., Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 5-tert-Butyl-6-chloro-N-[(4-(trifluoromethyl)phenyl]pyrazine-2-carboxamide. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 137: p. 193-206.
80. Coates, J., Interpretation of Infrared Spectra, A Practical Approach. 2006.
81. Wang, S., et al., Distinction of four Dalbergia species by FTIR, 2nd derivative IR, and 2D-IR spectroscopy of their ethanol-benzene extractives. Holzforschung, 2016. 70: p. 503-510.
82. Fortgang, P., et al., Robust Electrografting on Self-Organized 3D Graphene Electrodes. ACS Applied Materials Interfaces, 2015. 8.
83. Ciampi, S., et al., Functionalization of Acetylene-Terminated Monolayers on Si(100) Surfaces:  A Click Chemistry Approach. Langmuir, 2007. 23(18): p. 9320-9329.
84. Tan, W., et al., Novel 1,2,3-triazolium-functionalized starch derivatives: Synthesis, characterization, and evaluation of antifungal property. Carbohydrate Polymers, 2017. 160: p. 163-171.
85. Xie, Y., R. Tayouo, and S.P. Nunes, Low fouling polysulfone ultrafiltration membrane via click chemistry. Journal of Applied Polymer Science, 2015. 132(21).
86. Wang, X., Z. Chen, and Z. Shen, Dynamic behavior of polymer surface and the time dependence of contact angle. Science in China, Series B: Chemistry, 2005. 48(6): p. 553-559.
87. Shanahan, M.E.R. and A. Carre, Viscoelastic Dissipation in Wetting and Adhesion Phenomena. Langmuir, 1995. 11(4): p. 1396-1402.
88. Shanahan, M.E.R. and A. Carre, Anomalous Spreading of Liquid Drops on an Elastomeric Surface. Langmuir, 1994. 10(6): p. 1647-1649.
89. Weikart, C.M., M. Miyama, and H.K. Yasuda, Surface Modification of Conventional Polymers by Depositing Plasma Polymers of Trimethylsilane and of Trimethylsilane + O2: I. Static Wetting Properties. Journal of Colloid and Interface Science, 1999. 211(1): p. 18-27.
90. Carey, D.H., S.J. Grunzinger, and G.S. Ferguson, Entropically Influenced Reconstruction at the PBD-ox/Water Interface:  The Role of Physical Cross-Linking and Rubber Elasticity. Macromolecules, 2000. 33(23): p. 8802-8812.
91. Chen, S.-Y., et al., Contact Angle and Adhesion Dynamics and Hysteresis on Molecularly Smooth Chemically Homogeneous Surfaces. Langmuir, 2017. 33(38): p. 10041-10050.
92. Janssen, D., et al., Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films, 2006. 515(4): p. 1433-1438.
93. Verkuijlen, R.O.F., et al., Surface modification of polycarbonate and polyethylene naphtalate foils by UV-ozone treatment and μPlasma printing. Applied Surface Science, 2014. 290: p. 381-387.
94. Milne, I., R.O. Ritchie, and B. Karihaloo, Comprehensive Structural Integrity. Comprehensive Structural Integrity. Vol. 1. 2007. 1-5040.
95. Korhonen, J.T., et al., Reliable Measurement of the Receding Contact Angle. Langmuir, 2013. 29(12): p. 3858-3863.
96. Donaruma, L.G., Surface and interfacial aspects of biomedical polymers. Volume 1. Surface chemistry and physics, Joseph D. Andrade, Ed., Plenum, New York, 1985, 479 pp. Price: $69.50. Journal of Polymer Science Part C: Polymer Letters, 1986. 24(8): p. 427-428.
97. Lin, C.H., et al., Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polymer Chemistry, 2012. 3(4): p. 935-945.
98. Popescu, C.-M., et al., Spectral Characterization of Eucalyptus Wood. Applied spectroscopy, 2007. 61: p. 1168-77.
99. Heredia-Guerrero, J.A., et al., Infrared and Raman spectroscopic features of plant cuticles: a review. 2014. 5(305).
100. Mizan, T.I., P.E. Savage, and R.M. Ziff, Temperature dependence of hydrogen bonding in supercritical water. Journal of Physical Chemistry, 1996. 100(1): p. 403-408.
101. Alqaheem, Y. and A.A. Alomair, Microscopy and Spectroscopy Techniques for Characterization of Polymeric Membranes. Membranes (Basel), 2020. 10(2).
102. Kundachira Subramani, N., Revisiting Powder X-ray Diffraction Technique: A Powerful Tool to Characterize Polymers and their Composite Films. Research Reviews: Journal of Material Sciences, 2016. 04.
103. Barenholz, Y. and D.D. Lasic, Handbook of nonmedical applications of liposomes: Volume III: From design to microreactors. Handbook of Nonmedical Applications of Liposomes: Volume III: From Design to Microreactors. 2018. 1-358.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57161-
dc.description.abstract表面能受分子大小和分子內構型的影響。表面能可能是透過通過添加末端羥基(極性基團)和烷烴,造成結構上產生構型上的變化,烷烴可以被誘導面相表面,從而增加向外部重組的亞甲基的鏈並造成類微胞的結構,進而降低聚環氧樹酯(PECH)-三唑聚合物的表面能。聚環氧樹酯(PECH)橡膠上的氯原子首先被疊氮基取代,然後再轉化為與含1-4個碳原子的烷基醇和含4、5、6和8個碳原子的烷烴連接的三唑基。將由此產生的聚合物塗覆到矽晶片上以形成薄膜,並通過水滴和二碘甲烷的靜態接觸角和動態接觸角來表徵。
聚環氧樹酯(PECH)-三唑-1至聚環氧樹酯(PECH)-三唑-4與水的接觸角有關。那是因為材料中的羥基會變形而朝向表面變形而與水接觸。聚環氧樹酯(PECH)-三唑-8C具有非常低的表面能16.04 mJ / m2,甚至低於PTFE。
zh_TW
dc.description.abstractThe surface energy is influenced by the effective molecular size and the intra-molecular configurations. The surface energy was hypothesized that the surface energy of a polyepichlorohydrin (PECH)-triazole polymer can be reduced by adding an end hydroxyl group (a polar group) and alkane which can induce configuration orientation to increase the chains for methylene group reorganized to the outward of surface and causing micelle-like structure, then decrease the surface energy. The chlorine atom on PECH rubber was firstly substituted by an azide group, which was then converted to triazole groups linked with alkyl-ol that contained 1‒4 carbon atoms and the alkane that contained 4, 5, 6 and 8 carbon atoms. The polymers thus-produced were coated onto a silicon wafer to form a thin film and to characterize by static contact angles and dynamic contact angles for drops of water and diiodomethane.
The PECH-triazole-1 to PECH-triazole-4 have time dependent on the contact angle of water. That was because the hydroxyl group in the material would deform to toward to the surface to contact with water. The PECH-triazole-8C have very low surface energy 16.04 mJ/m2, and even lower than PTFE.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:36:32Z (GMT). No. of bitstreams: 1
U0001-2207202015563600.pdf: 8113434 bytes, checksum: 9e74be19fc282d80017be7d3992c0380 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
論文口試委員審定書 i
ACKNOWLEDGEMENTS ii
Abstract iii
摘要 iv
Contents v
List of Schemes vii
List of Figures vii
List of Tables xvii
Chapter 1 Introduction 1
Chapter 2 Literature review 4
2.1 The characteristics of Polyepichlorohydrin 4
2.2 Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) 4
2.3 Surface energy 5
2.3.1 The definition of surface energy 5
2.3.2 The estimation of surface energy 5
2.4 Low surface energy 8
2.5 The examples of low surface energy in the nature 9
2.6 The requirement of low surface energy 11
2.6.1 The physical treatment for low surface energy 11
2.6.2 The chemical treatment for low surface energy 13
2.7 The applications of low surface energy 15
Chapter 3 Materials and experimental details 17
3.1 Material 17
3.2 Experimental 18
3.2.1 Synthesis of intermediate product, “PECH-azide” 18
3.2.2 Synthesis of final product, “PECH-triazole” 19
3.2.3 Purification of PECH-triazole 22
3.3 Characterization and instrumentation 23
3.3.1 Fourier Transform Infrared Spectroscopy (FTIR) 23
3.3.2 Nuclear Magnetic Resonance (NMR) 23
3.3.3 X-ray Photoelectron Spectroscopy (XPS) 24
3.3.4 Preparation of thin film 24
3.3.5 Scanning Electron Microscopy (SEM) 26
3.3.6 Atomic Force Microscopy (AFM) 26
3.3.7 X-ray Diffraction (XRD) 26
3.3.8 Static Contact Angle Measurement 27
3.3.9 Self-assembled device for measuring dynamic contact angles 27
Chapter 4 Results and Discussion 29
4.1 The chemical characteristics of polymer 29
4.1.1 The functional group of polymer 29
4.1.2 The structures of polymer 39
4.2 The morphology of surface for samples 43
4.2.1 The SEM analysis of samples 43
4.3 The surface properties of samples 54
4.3.1 The static contact angle test for samples 54
4.3.2 The surface energy of the samples 69
4.3.3 The dynamic contact angle test for samples 78
4.4 Intra-molecular interaction 102
Chapter 5 Conclusion 115
Chapter 6 References 119
dc.language.isoen
dc.subject聚環氧樹酯zh_TW
dc.subject表面能zh_TW
dc.subject羥基zh_TW
dc.subject疊氮基zh_TW
dc.subject三唑zh_TW
dc.subjectazide groupen
dc.subjectPolyepichlorohydrinen
dc.subjectsurface energyen
dc.subjecttriazoleen
dc.subjecthydroxylen
dc.title擁有不同側鏈之聚環氧樹酯 - 三唑聚合物的表面能效應zh_TW
dc.titleThe effect on surface energy of Polyepichlorohydrin-Triazole with different side chain
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃志彬(Chih-Pin Huang),鄭智嘉(Chih-Chia Cheng)
dc.subject.keyword聚環氧樹酯,三唑,疊氮基,羥基,表面能,zh_TW
dc.subject.keywordPolyepichlorohydrin,triazole,azide group,hydroxyl,surface energy,en
dc.relation.page126
dc.identifier.doi10.6342/NTU202001740
dc.rights.note有償授權
dc.date.accepted2020-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-2207202015563600.pdf
  未授權公開取用
7.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved