Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(C. C. Yang)
dc.contributor.authorPei-Ying Shihen
dc.contributor.author石珮瑩zh_TW
dc.date.accessioned2021-06-16T06:36:24Z-
dc.date.available2014-08-05
dc.date.copyright2014-08-05
dc.date.issued2014
dc.date.submitted2014-08-01
dc.identifier.citation1. R. H. Ritchie, “Plasmon losses by fast electrons in thin films, ” Phys. Rev. 106, 874 (1957).
2. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter, ” Appl. Phys. Lett. 92, 133115, (2008).
3. P. Drude, “Zur Elektronentheorie der Metalle,” Ann. Phys. 1, 566–613 (1900).
4. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B. 6, 4370(1972).
5. C. Sonnichsen, Plasmons in metal nanostructures PhD Thesis (Ludwig- Maximilians-Universtat Munchen, Munchen, 2001).
6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 257403 (2005).
7. C. Sonnichsen, T. Franzl, T. Wilk, G. von Plessen, and J. Feldmann, “Drastic Reduction of Plasmon Damping in Gold Nanorods,” Phys. Rev. Lett. 88, 077402 (2002).
8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
9. J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003).
10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996).
11. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005).
12. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003).
13. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,” Ann. Phys. 25, 377 (1908).
14. C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949 (2000).
15. B. P. Rand, P. Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic Tandem thin-film solar-cells ontaining silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004).
16. M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, “Plasmonic heating of gold nanoparticles and its exploitation, ” Proc. SPIE 5649, 565 (2005).
17. K. H. Su, Q. H. Wei, and X. Zhang, “Surface Plasmon Coupling Between Two Nano Au Particles, ” IEEE-NANO 2, 279 (2003).
18. P. Raveendran, J. Fu and S.L. Wallen, “A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy, ” Green Chem. 8, 34 (2006).
19. M. J. Kim, H. J. Na, K.C. Lee, E.A. Yoo, and M.Y. Lee, “Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform, ” J. Mater. Chem. 13, 1789 (2003).
20. S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529 (1999).
21. S. Nakamura, M. Senoh, and T. Mukai, “High‐power InGaN/GaN double‐ heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
22. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination With Solid State Lighting Technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
23. E. F. Schubert and J. K. Kim, “Solid-State Light Sources Getting Smart,” Science 308, 1274 (2005).
24. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
25. S. Nakamura and G. Fasol, The Blue Laser Diode: GaN Based Light Emitters and Lasers (Springer, New York, 1997).
26. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1–xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94, 6477 (2003).
27. A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys. 94, 2779 (2003).
28. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
29. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
30. I. Ho, and G. B. Stringfellow. “ Solid phase immiscibility in GaInN,” Appl. Phys. Lett. 69, 2701 (1996).
31. K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi. M. Terazima, and T. Mukai, “Confocal microphotoluminescence of InGaN-based light-emitting diodes,” J. Appl. Phys. 98, 064503 (2005), and references therein.
32. C. Wetzel,T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, “GaInN/GaN growth optimization for high-power green light-emitting diodes,” Appl. Phys. Lett. 85, 866 (2004).
33. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
34. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160 (2007).
35. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,”Appl. Phys. Lett. 73, 1691 (1998).
36. A. Hangleiter, F. Hitzel, S. Lahmann, and U. Rossow, “Composition dependence of polarization fields in GaInN/GaN quantum wells,” Appl. Phys. Lett. 83, 1169 (2003)
37. I. H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, “A self‐consistent solution of Schrodinger–Poisson equations using a nonuniform mesh,” J. Appl. Phys. 68, 4071 (1990).
38. N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75, 1577 (1999).
39. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Elec. 36, 1131 (2000).
40. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393 (2002).
41. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999).
42. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002).
43. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946).
44. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008).
45. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20, 1339 (2008).
46. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
47. Mark I. Stockman, “Spasers explained,” Nature Photonics 2, 327 - 329 (2008)
48. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, Nat. Mater. 3, 601 (2004).
49. C. H. Lu , C. C. Lan , Y. L. Lai , Y. L. Li , and C. P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21, 4719-4723 (2011).
50. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013).
51. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008).
52. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91, 171103 (2007).
53. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction of the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010).
54. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with Its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008).
55. K. C. Shen, C. H. Liao, Z. Y. Yu, J. Y. Wang, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Effects of the intermediate SiO2 layer on polarized output of a light-emitting diode with surface plasmon coupling,” J. Appl. Phys. 108, 113101 (2010).
56. H. S. Chen, C. F Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102, 041108 (2013).
57. C. Y. Cho, J. J. Kim, S. J. Lee, S. H. Hong, K. J. Lee, S. Y. Yim, and S. J. Park, “Enhanced Emission Efficiency of GaN-Based Flip-Chip Light-Emitting Diodes by Surface Plasmons in Silver Disks,” Appl. Phys. Express 5, 122103 (2012).
58. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253-1257 (2008).
59. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011).
60. C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99, 041107 (2011).
61. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007).
62. J. Y. Wang, Y. W. Kiang, and C. C. Yang, “Emission enhancement behaviors in the ... metallic grating and light emitter,” Appl. Phys. Lett. 91, 233104 (2007).
63. G. Sun, J. B. Khurgin, and C. C. Yang, “Numerical Simulation on Electromagnetic Field Distribution of Radiating Dipoles near Metal Nanoparticles,” Appl. Phys. Lett. 95, 171103 (2009).
64. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914 (2011).
65. G. Sun and J. B. Khurgin, IEEE J. Select. “Plasmon enhancement of luminescence by metal nanoparticles,” Topics in Quantum Electron. 17, 110 (2011).
66. I. Gontijo, M. Boroditsky, and E. Yablonovitch, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,Phys, ” Rev. B 60, 11564 (1999).
67. L. W. Jang, D. W. Jeon, T. Sahoo, D. S. Jo, J. W. Ju, S. J. Lee, J. H. Baek, J. K. Yang, J. H. Song, A. Y. Polyakov, and I. H. Lee, “Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles, ” Optics Express 20, 2116 (2012).
68. X. Gu, T. Qiu, W. Zhang, P. K. Chu, “Light-emitting diodes enhanced by localized surface plasmon resonance, ” Nanoscale Res. Lett. 6, 199 (2011).
69. C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K. Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells, ” Nanotechnology 22, 475201 (2011).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57156-
dc.description.abstract在本研究中,我們在單一量子井(氮化鎵/氮化銦鎵)厚度分別為15奈米及120奈米的氮化鎵覆蓋層上製作三種不同金屬結構,並在室溫與低溫下量測變激發功率光激螢光與時域解析螢光頻譜的衰變時間。此三種結構包括在氮化鎵的覆蓋層上分別鍍上銀薄膜和隨機分佈的銀奈米顆粒,以及沒任何金屬結構的對照組樣品。銀薄膜和銀奈米顆粒兩種結構是為了要區分出表面電漿極化子及侷域表面電漿子和量子井耦合現象的差異。
覆蓋層厚度為120奈米的樣品因為沒有有效的表面電漿子與量子井耦合行為,導致三種金屬結構區域的光激螢光量測結果無明顯變化趨勢。覆蓋層厚度為15奈米的樣品因銀薄膜與銀奈米顆粒和量子井有顯著的表面電漿極化子或侷域表面電漿子的耦合現象,所以無論在室溫或低溫下,其光激螢光的積分強度相較於對照組樣品皆提升。低溫下,對於在銀薄膜與銀奈米顆粒上所量測到光激螢光的積分強度比例隨著變激發功率僅有微弱的改變,主要是因為低溫下的表面電漿子耦合效應較弱,其積分強度的提升主要來自銀與介電質介面的反射而造成量子井處激發強度提高所致。室溫下,銀奈米顆粒所量測光激螢光的積分強度比例隨著變激發功率也只是微弱改變,可知室溫下侷域表面電漿子的耦合現象並不隨著變激發功率而變。然而,室溫下的銀薄膜所量測光激螢光的積分強度便隨著變激發功率而有顯著的增加,由此可知室溫下表面電漿極化子耦合強度隨著量子井中的載子濃度增加而增強。此現象亦可以從銀薄膜所量測到的內部量子效率相較於對照組樣品有較大的增加比例,以及比對照組樣品有較陡峭衰減的光激螢光時間得知。
隨著激發功率增加而增強的表面電漿極化子效應可能是因為量子史塔克效應的載子屏蔽效應,此效應會將量子井的發光波長藍移,使得發光波長更接近表面電漿極化子共振波長,因此有更強的耦合效果。
zh_TW
dc.description.abstractThe pump power dependent, continuous and time-resolved photoluminescence (PL) measurements at 10 and 300 K in the three regions on two single InGaN/GaN quantum well (QW) epitaxial structures with the GaN capping layer thicknesses at 15 and 120 nm are performed. Among the three regions, an Ag film and a random distribution of Ag nanoparticles (NPs) are fabricated on the GaN capping layers to form the Ag-film and Ag-NP regions for inducing surface plasmon polariton (SPP) and localized surface plasmon (LSP) couplings with the QW, respectively, and comparing their behaviors. The region without any metal structure is used as the control condition. Without a significant surface plasmon (SP) coupling effect on the 120-nm capping layer, the PL measurement leads to the results of inconsistent variation trends among the three regions. With significant SPP or LSP coupling on the 15-nm capping layer, the integrated PL intensities in the Ag-film and Ag-NP regions are enhanced with respect to that in the control region at either 10 or 300 K. The weak dependencies of intensity ratio on pump power in the Ag-film and Ag-NP regions at 10 K indicate that at this temperature, the SP coupling effect is weak and the enhancements are mainly caused by the increased reflections at the Ag/GaN interfaces. Also, the weak dependence of intensity ratio on pump power in the Ag-NP region at 300 K implies the essentially fixed LSP coupling strength as pump power increases. However, the increasing trend of intensity ratio with pump power in the Ag-film region at 300 K shows that the SPP coupling strength can increase with the carrier density in the QW. This observation is confirmed by the larger increasing slope of internal quantum efficiency (IQE) and the steeper decrease of PL decay time with pump power in the Ag-film region. The increasing trend of the SPP coupling strength with pump power can be attributed to the screening of the quantum-confined Stark effect, which can blue-shift the QW emission wavelength for the QW to interact with the SPP of a higher density of state.en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:36:24Z (GMT). No. of bitstreams: 1
ntu-103-R01941028-1.pdf: 2957127 bytes, checksum: 5f5e0a1586cc28f90377383618ba2203 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 II
摘要 III
Abstract IV
Contents V
Chapter 1 Introduction
1.1 Surface Plasmon…………………………………………………………1
1.1.1 Dielectric Constants of Metals……………………………..…...1
1.1.2 Surface Plasmon Polariton(SSP)……………………………….3
1.1.3 Localized Surface Plasmon (LSP)….…….………………….....4
1.1.4 Application of Surface Plasmons……...……………………….7
1.2 Nitride-based Semiconductors for Optoelectronic Application……..9
1.2.1 Application of Nitride-based Devices………………………….9
1.2.2 Characteristics of an InGaN/GaN Quantum Well……….…...10
1.2.3 Coupling between an InGaN/GaN QW and Surface Plasmons 12
1.2.4 SPP and LSP Coupling with an InGaN/GaN Quantum Well….14
1.3 Research Motivations…………………………………………..…..…….19

Chapter 2 Sample Preparation and Eaperimental Setup
2.1 Sample Preparation Procedures, and Characterizations……………..26
2.2 Pump Power Dependent Photoluminescence………..…………………29
2.2.1 Introduction………………………………………………………29
2.2.2 Experimental Setup..……………………………………………..29
2.3 Time Resolved Photoluminescence……………..………….……………31
2.3.1 Introduction……………………………………………………….31
2.3.2 Experimental Setup……………………………………………….32
Chapter 3 Measurement Results
3.1 Pump Power Dependent PL Results...………………………….……….43
3.2 Pump Power Dependent TRPL Results……………………………...…48
3.3 Discussions………………………………………………………………..50
Chapter 4 Conclusions…………………………………………………………..72
Reference……………………………………………………………………….74
dc.language.isoen
dc.subject光致螢光zh_TW
dc.subject表面電漿zh_TW
dc.subject氮化銦鎵zh_TW
dc.subject氮化鎵zh_TW
dc.subject量子井zh_TW
dc.subjectGaNen
dc.subjectPhotoluminescenceen
dc.subjectTime Resolved Photoluminescenceen
dc.subjectSurface Plasmonen
dc.subjectInGaNen
dc.title利用光致發螢光探討表面電漿子與氮化銦鎵/氮化鎵量子井耦合行為zh_TW
dc.titlePhotoluminescence Study of Surface Plasmon Coupling Behaviors with an InGaN/GaN Quantum Wellen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),吳育任(Yuh-Renn Wu),江衍偉(Yean-Woei Kiang),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword光致螢光,表面電漿,氮化銦鎵,氮化鎵,量子井,zh_TW
dc.subject.keywordPhotoluminescence,Time Resolved Photoluminescence,Surface Plasmon,InGaN,GaN,en
dc.relation.page83
dc.rights.note有償授權
dc.date.accepted2014-08-01
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.89 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved