請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57152完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林寶秀 | |
| dc.contributor.author | Yun-Hsin Cheng | en |
| dc.contributor.author | 鄭蘊欣 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:36:17Z | - |
| dc.date.available | 2014-09-01 | |
| dc.date.copyright | 2014-08-04 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-08-01 | |
| dc.identifier.citation | 1. 王以雄等譯,(2006),熱力學概論,新北:高立出版。
2. 王錦堂,(1984),建築應用物理學,台北:臺隆書店出版。 3. 台灣綠屋頂暨立體律化協會,(2012),我愛綠屋頂,台北:麥浩斯出版。 4. 宋苾璇,(2002),壁面綠化隔熱效能之研究,碩士論文,台灣科技大學建築研究所,台北。 5. 林慧盈,(2000),不同植栽配置模式之減噪效果研究 -以台中市綠園道系統為例,碩士論文,中興園藝學系研究所,台中。 6. 凌德麟,(1997),園藝概論,台北:國立編譯館 7. 高國峰,(2000),利用紅外線熱像技術觀測環境綠化效果之研究,碩士論文,台灣科技大學工程技術研究所,台北。 8. 張莉欣、余思嫻、鄭明仁、周瑺玫,(2012),施工圍籬綠美化對視覺偏好之影響研究,造園景觀學報,18(3),43-62。 9. 陳姵妤,(2010),爬藤植物綠化對於建築物降溫效,碩士論文,台灣大學土木工程學研究所,台北。 10. 黃世孟,(2009),建築物的垂直綠化與風土外牆設計,台北:建築師雜誌。 11. 黃照婷、林晏州,(2009),草花色彩配色之偏好與色知覺關係之研究,造園景觀學報,14(4),19-34 12. 歐聖榮、曾怡錦,(2001),不同草花色彩配置環境之景觀偏好,造園景觀學報,7(2),121-135。 13. 歐聖榮、蘇瑋佳,(2001),以立面綠化設計改善都市商業街道視覺品質之模式研究,興大學報,26(1),43-55。 14. 賴明洲、李叡明譯,(1993),綠地保全的生態學,台北:淑馨出版社。 15. 謝維芳、歐聖榮,(2005),不同植栽對建築物隔熱效果影響之研究,興大園藝學報,30(1),089-100。 16. 譚琪,姜洪濤譯,(2003),屋頂、牆面綠化技術指南,中國建築工業出版 17. Alexandri, E., & Jones, P. (2008). Temperature decreases in an urban canyon due to green walls and green roofs in diverse climates. Building and Environment, 43, 480-493. 18. Chen, Q., Li, B., & Liu, X. (2013). An experimental evaluation of the living wall system in hot and humid climate. Energy and Buildings, 61, 298-307. 19. Cheng, C. Y., Cheung, K. K. S., & Chu, L. M. (2010). Thermal performance of a vegetated cladding system on facade wall. Building and Environment, 45(8), 1779-1787. 20. Di, H. F., & Wang, D. N. (1999). Cooling effect of ivy ion a wall. Experimental Heat Transfer, 12(3), 235-245. 21. Dunnett, N., & Kingsbury, N. (2008). Planting Green Roofs and Living Walls. Portland: Timber Press 22. Eumorfopoulou, E. A., & Kontoleon, K. J. (2009). Experimental approach to the contribution of plant covered walls to the thermal behaviour of building envelopes. Building and Environment, 44 (5), 1024–1038 23. Fare, D. C., & Clatterbuck, W. K.(1998).Evergreen trees for screens and hedges in the landscape.Tennessee Urban Forestry Council 24. Fernandez-Canero, R., Emilsson, T., Fernandez-Barba, C., & Herrera , M.A.H. (2013) Green roof systems: A study of public attitudes and preferences in southern Spain. Journal of Environmental Management. 128, 106-115. 25. Franco, A., Fernandez-Canero, R., Perez-Urrestarazu, L., & Valera, D. L. (2012). Wind tunnel analysis of artificial substrates used in active living walls for indoor environment conditioning in Mediterranean buildings. Building and Environment, 51, 370-378. 26. Holm, D. (1989). Thermal Improvement by means of Leaf Cover on External Walls - A Simulation Model .Energy and Buildings, 14, 19–30. 27. Hoyano, A. (1988). Climatological Uses of Plants for Solar Control and the Effects on the Thermal Environment of a Building. Energy and Buildings, 11, 181-199. 28. Ip, K., Lam, M., & Miller, A. (2012).Shading performance of a vertical deciduous climbing plant canopy. Building and Environment, 45(1), 81-88. 29. Jim, C. Y., & He, H. M. (2011). Estimating heat flux transmission of vertical greenery ecosystem. Ecological Engineering, 37(8), 1112-1122. 30. Jones, H. G. (1992). Plants and microclimate: A quantitative approach to environmental plant physiology. (2th eds.). New York: Cambridge University Press. 31. Kohler, M. (2008). Green facades- A view back and some visions. Urban Ecosystems. 11, 423-436. 32. Lin, B. S., & Lin, Y. J. (2010). Cooling effect of shade trees with different characteristics in a subtropical urban park. HortScience, 45, 83-86. 33. Mazzali, U., Peron, F., Romagnoni,P., Pulselli, R. M., & Bastianoni, S. (2013). Experimental investigation on the energy performance of Living Walls in a temperate climate. Building and Environment, 64, 57-66 34. McPherson, E. G. (1988). Functions of buffer plantings in urban environments. Ecosystems and Environment, 22/23, 281-198. 35. Miller, D. H. (1977). Water at the surface of the earth : An introduction to ecosystem hydrodynamics . New York : Academic Press. 36. Ohashi, Y. (2004). Influence of heat-island countermeasures on urban thermal environment - Numerical experiments for office building area in Tokyo. Bulletin of the Okayama University of Science A Natural Science, 40, 71-80. 37. Ottele, M., Perini, H., Fraaij, A. L. A., Haas, E. M., & Raiteri, R., (2011). Comparative life cycle analysis for green facades and living wall systems . Building and Environment, 43(12), 3419-3429 38. Ottele, M., van Bohemen, H. D., Fraaij, A. L. A. (2010).Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecological Engineering, 36(2),154-162. 39. Papadakis, G., Tsamis, P., & Kyritsis, S. (2001). An experimental investigation of the effect of shading with plants for solar control of buildings. Building and Environment., 33, 831–836. 40. Perez, G., Rincon, L., Vila, A., Gonzalez, J. M., & Cabeza, L. F. (2011). Green vertical systems for buildings as passive systems for energy savings. Applied Energy, 88(12), 4854-4859. 41. Perez, G., Rincon, L., Vila, A., Gonzalez, J. M., & Cabeza, L. F. (2011). Behavior of green facades in Mediterranean Continental climate. Energy Conversion and Management, 52(4), 1861-1867. 42. Perini, K., Ottele, M., Fraaij, A. L. A., Haas, E. M., & Raiteri, R., (2011). Vertical greening systems and the effect on air flow and temperature on the building envelope. Building and Environment, 46(11), 2287-2294 43. Serpa, A., & Muhar, A. (1996). Effects of plant size, texture and colour on spatial perception in public green areas - a cross-cultural study. Landscape and Urban Planning, 36, 19-25. 44. Sheweka, S. M., & Mohamed, N. M. (2012). Green facades as a new sustainable approach towards climate change. Energy Procedia, 18, 507-520. 45. Stec, W. J., van Paassen, A. H. C., & Maziarz, A. (2005). Modelling the double skin facade with plants. Energy and Buildings, 37, 419-427. 46. Sternberg, T., Viles, H., Cathersides, A., & Edwards, M. (2010). Dust particulate absorption by ivy (Hedera helix L) on historic walls in urban environments. Science of the Total Environment, 409(1), 162-168. 47. Sternberg, T., Viles, H., &Cathersides, A. (2011). Evaluating the role of ivy (Hedera helix) in moderating wall surface microclimates and contributing to the bioprotection of historic buildings. Building and Environment, 46, 293-297. 48. Sunakorn, P., & Yimprayoon, C. (2011). Thermal performance of biofacade with natural ventilation in the tropical climate. Procardia Engineering, 21, 34-41. 49. White, E. V., & Gatersleben, B. (2011). Greenery on residential buildings: Does it affect preferences and perceptions of beauty?. Journal of Environmental Psychology, 31(1), 89-98. 50. Wong, N. H., Tan, A. Y. K., Chen, Y., Segar, K., Tan, P. Y., Chan, D., Chiang, K., & Wong, N. C. (2010).Acoustics evaluation of vertical greenery systems for building walls. Building and Environment, 45(2), 411-420. 51. Wong, N. H., Tan, A. Y. K., Chen, Y., Segar, K., Tan, P. Y., Chan, D., Chiang, K., & Wong, N. C. (2010). Thermal evaluation of vertical greenery systems for building walls. Building and Environment, 45, 663-672. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57152 | - |
| dc.description.abstract | 隨著都市擴張可用於綠化的面積變得非常有限,而垂直綠化被視為增加都市綠化的捷徑。垂直綠化不僅能增加綠化空間,其對環境有諸多的效益如提升都市景觀美質、建物保護、減噪、淨化空氣等,其中更能改善日益嚴重的熱島效應。近年來垂直綠化技術日異更新下,綠化牆面上植栽的構圖配置越來越精緻化,進而提升都市景觀、增加地方資產價值,並隨著節能減碳議題的發燒垂直綠化的降溫效益越來越重視下,相關研究也表示植栽特性會影響降溫能力的表現,但未從構圖組合的觀點來看,因此本研究的目的在於釐清垂直綠化上構圖配置以及植栽特性與降溫效益之間的關係,有助於日後垂直綠化的建置發展,
實驗場地選擇國立臺灣大學造園館2樓平台,經由市面上的植生牆歸納出6種不同配置構圖進行建置,分別是幾何、幾何懸垂、曲線、曲線懸垂、無圖案、特殊造型,每組重複兩個。使用熱偶導線測量每座綠牆的建築表面溫度、建築室內溫度,每5分鐘紀錄一次。測量時間於103年4月至5月,資料分析選用11時至12時間之數據。 研究結果顯示,垂直綠化上不同構圖對建築物表面與室內溫度之降溫效果有顯著差異,其中特殊造型在表溫與氣溫降溫效果最佳。進一步分析構圖特性對建築物降溫之影響,結果顯示懸垂與紅葉覆蓋面積愈多、深綠葉覆蓋面積愈少對建築物表溫降溫效果愈好;在室內氣溫則是懸垂與紅葉覆蓋面積愈多、綠葉覆蓋面積愈多對建築物降溫效果愈好。 | zh_TW |
| dc.description.abstract | Due to urban sprawl, the green land is shrinking. The importance of urban greenery is increasingly being recognized by people in the regeneration of our cities. Vertical greening is thought as an effective way to increase urban green land, Vertical greening not only increase urban green land but also can improve beautification, reduce air pollution, sound insulation and especially mitigation of urban heat island effect. In recent years, under the vertical greening technology updates. The vertical greening planting more and more refined and thus enhance the urban landscape, estimate a value increase interval for a property. Vertical greening was under consideration until the concern of carbon reduction issue. Cooling efficiency has become an important topic of vertical greening, and have excellent shape configuration is the development trend of green wall. The aims of this study were to discuss the effects of different composition on green wall cooling and to examine different cooling effects of planting composition. The platform of National Taiwan University were chosen as the study site. Six kinds of configurations green wall were chosen as study, about geometry, geometry with overhang plant, curve, curve with overhang plant, no pattern, and special shape. The surface temperature and air temperature were recorded the average every 5 minutes. The daily data from 11 am to 12 am between April and May, 2014 were used. Results suggested that there were significantly different between the cooling effects of different composition, and the special shape composition had a best cooling effect. The effects of plant characteristics on cooling effect of the surface temperature and the air temperature were examined. Results suggested that increase covered area of red leaves and overhang, and less dark green leafy coverage area had positive surface temperature cooling effect significantly, and increase covered area of red leaves, overhang, green leafy coverage area had positive air temperature cooling effect significantly. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:36:17Z (GMT). No. of bitstreams: 1 ntu-103-R01628315-1.pdf: 4718426 bytes, checksum: b43e152469ea3839a0b68cb55d61608b (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 誌謝 III
摘要 V Abstract VII 目錄 IX 圖目錄 XI 表目錄 XIII 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 3 第三節 研究內容與流程 4 第二章 文獻回顧 7 第一節 熱傳理論 7 第二節 垂直綠化定義與分類 11 第三節 垂直綠化效益 16 第四節 垂直綠化的降溫省能效益與相關研究 19 第五節 植栽配置 24 第三章 研究方法 27 第一節 研究架構與內容 27 第二節 實驗設計 36 第三節 分析計畫 46 第四章 結果討論 49 第一節 環境氣候與建築物測量結果 49 第二節 不同構圖下建築物溫度表現 60 第三節 不同構圖之植生牆對建築物降溫能力分析 67 第四節 構圖特性對建築物降溫能力分析 70 第五節 植表溫度與降溫效果之關係 73 第六節 驗證研究假設 74 第五章 結論與建議 77 第一節 結論 77 第二節 建議 84 參考文獻 87 附件一、垂直綠化構圖調查表 93 附件二、實驗場施工流程 97 附件三、植生牆植物清單 99 | |
| dc.language.iso | zh-TW | |
| dc.subject | 植生牆 | zh_TW |
| dc.subject | 綠牆 | zh_TW |
| dc.subject | 熱效益 | zh_TW |
| dc.subject | Green wall | en |
| dc.subject | Living wall | en |
| dc.subject | Thermal benefit | en |
| dc.title | 垂直綠化上植栽構圖對降溫效果之影響 | zh_TW |
| dc.title | Impact of Planting Configuration on the Cooling Effect of Vertical Greening | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林晏州,張育森,歐聖榮,張俊彥 | |
| dc.subject.keyword | 綠牆,植生牆,熱效益, | zh_TW |
| dc.subject.keyword | Green wall,Living wall,Thermal benefit, | en |
| dc.relation.page | 105 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2014-08-01 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
