請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57139完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮雪芬(Hsueh-Fen Juan) | |
| dc.contributor.author | Hao-Chun Chang | en |
| dc.contributor.author | 張皓鈞 | zh_TW |
| dc.date.accessioned | 2021-06-16T06:35:56Z | - |
| dc.date.available | 2021-08-01 | |
| dc.date.copyright | 2020-08-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-07-28 | |
| dc.identifier.citation | 1. Egeblad M, Nakasone ES, Werb Z. Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 2010;18(6):884-901. doi: 10.1016/j.devcel.2010.05.012 [published Online First: 2010/07/16] 2. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252-64. doi: 10.1038/nrc3239 [published Online First: 2012/03/23] 3. Vey N, Karlin L, Sadot-Lebouvier S, et al. A phase 1 study of lirilumab (antibody against killer immunoglobulin-like receptor antibody KIR2D; IPH2102) in patients with solid tumors and hematologic malignancies. Oncotarget 2018;9(25):17675-88. doi: 10.18632/oncotarget.24832 [published Online First: 2018/05/01] 4. Viitala M, Virtakoivu R, Tadayon S, et al. Immunotherapeutic Blockade of Macrophage Clever-1 Reactivates the CD8(+) T-cell Response against Immunosuppressive Tumors. Clin Cancer Res 2019;25(11):3289-303. doi: 10.1158/1078-0432.CCR-18-3016 [published Online First: 2019/02/14] 5. Hilf N, Kuttruff-Coqui S, Frenzel K, et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019;565(7738):240-45. doi: 10.1038/s41586-018-0810-y [published Online First: 2018/12/21] 6. Chen DS, Mellman I. Elements of cancer immunity and the cancer–immune set point. Nature 2017;541(7637):321-30. doi: 10.1038/nature21349 7. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013;39(4):782-95. doi: 10.1016/j.immuni.2013.10.003 [published Online First: 2013/10/22] 8. Galon J, Bruni D. Tumor Immunology and Tumor Evolution: Intertwined Histories. Immunity 2020;52(1):55-81. doi: 10.1016/j.immuni.2019.12.018 [published Online First: 2020/01/16] 9. Fridman WH, Pages F, Sautes-Fridman C, et al. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012;12(4):298-306. doi: 10.1038/nrc3245 [published Online First: 2012/03/16] 10. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 2018;24(5):541-50. doi: 10.1038/s41591-018-0014-x [published Online First: 2018/04/25] 11. Galon J, Fridman WH, Pages F. The adaptive immunologic microenvironment in colorectal cancer: a novel perspective. Cancer Res 2007;67(5):1883-6. doi: 10.1158/0008-5472.CAN-06-4806 [published Online First: 2007/03/03] 12. Galon J, Angell HK, Bedognetti D, et al. The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 2013;39(1):11-26. doi: 10.1016/j.immuni.2013.07.008 [published Online First: 2013/07/31] 13. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019;18(3):197-218. doi: 10.1038/s41573-018-0007-y [published Online First: 2019/01/06] 14. Thorsson V, Gibbs DL, Brown SD, et al. The Immune Landscape of Cancer. Immunity 2018;48(4):812-30.e14. doi: 10.1016/j.immuni.2018.03.023 15. Chen B, Khodadoust MS, Liu CL, et al. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol 2018;1711:243-59. doi: 10.1007/978-1-4939-7493-1_12 [published Online First: 2018/01/19] 16. Becht E, Giraldo NA, Lacroix L, et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol 2016;17(1):218. doi: 10.1186/s13059-016-1070-5 [published Online First: 2016/10/22] 17. Finotello F, Trajanoski Z. Quantifying tumor-infiltrating immune cells from transcriptomics data. Cancer Immunol Immunother 2018;67(7):1031-40. doi: 10.1007/s00262-018-2150-z [published Online First: 2018/03/16] 18. Sims AH, Howell A, Howell SJ, et al. Origins of breast cancer subtypes and therapeutic implications. Nat Clin Pract Oncol 2007;4(9):516-25. doi: 10.1038/ncponc0908 [published Online First: 2007/08/31] 19. Russnes HG, Lingjaerde OC, Borresen-Dale AL, et al. Breast Cancer Molecular Stratification: From Intrinsic Subtypes to Integrative Clusters. Am J Pathol 2017;187(10):2152-62. doi: 10.1016/j.ajpath.2017.04.022 [published Online First: 2017/07/25] 20. Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000;403(6769):503-11. doi: 10.1038/35000501 [published Online First: 2000/02/17] 21. Oyelade J, Isewon I, Oladipupo F, et al. Clustering Algorithms: Their Application to Gene Expression Data. Bioinform Biol Insights 2016;10:237-53. doi: 10.4137/BBI.S38316 [published Online First: 2016/12/10] 22. Brunet JP, Tamayo P, Golub TR, et al. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci U S A 2004;101(12):4164-9. doi: 10.1073/pnas.0308531101 [published Online First: 2004/03/16] 23. Chang H-C, Huang H-C, Juan H-F, et al. Investigating the role of super-enhancer RNAs underlying embryonic stem cell differentiation. BMC Genomics 2019;20(10):896. doi: 10.1186/s12864-019-6293-x 24. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature 1999;401(6755):788-91. doi: 10.1038/44565 25. Ding C, He X. On the Equivalence of Nonnegative Matrix Factorization and Spectral Clustering2005. 26. Shen YC, Hsu CL, Jeng YM, et al. Reliability of a single-region sample to evaluate tumor immune microenvironment in hepatocellular carcinoma. J Hepatol 2019 doi: 10.1016/j.jhep.2019.09.032 [published Online First: 2019/10/22] 27. Cancer Genome Atlas Research N, Weinstein JN, Collisson EA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45(10):1113-20. doi: 10.1038/ng.2764 [published Online First: 2013/09/28] 28. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 2011;12:323. doi: 10.1186/1471-2105-12-323 [published Online First: 2011/08/06] 29. Chen C, Grennan K, Badner J, et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. Plos One 2011;6(2):e17238. doi: 10.1371/journal.pone.0017238 [published Online First: 2011/03/10] 30. Sturm G, Finotello F, Petitprez F, et al. Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology. Bioinformatics 2019;35(14):i436-i45. doi: 10.1093/bioinformatics/btz363 [published Online First: 2019/09/13] 31. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. arXiv e-prints 2012. https://ui.adsabs.harvard.edu/abs/2012arXiv1201.0490P (accessed January 01, 2012). 32. van der Maaten LH, Geoffrey. Visualizing Data using t-SNE Journal of Machine Learning Research 2008;9 33. Niknafs MCaNGaVBaA. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. Journal of Statistical Software, Articles 2014;61(1548-7660):1–36. doi: 10.18637/jss.v061.i06 34. V-Measure: A Conditional Entropy-Based External Cluster Evaluation Measure; 2007; Prague, Czech Republic. Association for Computational Linguistics. 35. Rousseeuw PJ, Driessen KV. A Fast Algorithm for the Minimum Covariance Determinant Estimator. Technometrics 1999;41(3):212-23. doi: 10.1080/00401706.1999.10485670 36. Cameron Davidson-Pilon JK, Noah Jacobson, sean-reed, Ben Kuhn, Paul Zivich , Mike Williamson, AbdealiJK, Deepyaman Datta, Andrew Fiore-Gartland, Alex Parij , Daniel WIlson, Gabriel, Luis Moneda, Kyle Stark, Arturo Moncada-Torres, Harsh Gadgil, Jona, Karthikeyan Singaravelan, Lilian Besson, Miguel Sancho Peña, Steven Anton, Andreas Klintberg , Javad Noorbakhsh, Matthew Begun, Ravin Kumar, Sean Hussey, Dave Golland, jlim13, Abraham Flaxman. CamDavidsonPilon/lifelines: v0.22.8. 2019 doi: 10.5281/zenodo.3879298 37. Grambsch TMTaPM. Modeling Survival Data: Extending the Cox Model: Springer 2000. 38. Liberzon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst 2015;1(6):417-25. doi: 10.1016/j.cels.2015.12.004 [published Online First: 2016/01/16] 39. Mermel CH, Schumacher SE, Hill B, et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biology 2011;12(4):R41. doi: 10.1186/gb-2011-12-4-r41 40. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 2019;47(D1):D607-D13. doi: 10.1093/nar/gky1131 [published Online First: 2018/11/27] 41. Finisguerra V, Di Conza G, Di Matteo M, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature 2015;522(7556):349-53. doi: 10.1038/nature14407 [published Online First: 2015/05/20] 42. Ponzetta A, Carriero R, Carnevale S, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell 2019;178(2):346-60 e24. doi: 10.1016/j.cell.2019.05.047 [published Online First: 2019/07/02] 43. Fridlender ZG, Sun J, Kim S, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: 'N1' versus 'N2' TAN. Cancer Cell 2009;16(3):183-94. doi: 10.1016/j.ccr.2009.06.017 [published Online First: 2009/09/08] 44. Seabold SaP, Josef. statsmodels: Econometric and statistical modeling with python. 9th Python in Science Conference 2010 45. and PV, and RG, and TEO, et al. SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python. CoRR 2019;abs/1907.10121 46. Terpilowski M. scikit-posthocs: Pairwise multiple comparison tests in Python. Journal of Open Source Software 2019;4(36):1169. doi: 10.21105/joss.01169 47. Brodaczewska KK, Szczylik C, Fiedorowicz M, et al. Choosing the right cell line for renal cell cancer research. Molecular Cancer 2016;15(1):83. doi: 10.1186/s12943-016-0565-8 48. Eich ML, Chaux A, Mendoza Rodriguez MA, et al. Tumour immune microenvironment in primary and metastatic papillary renal cell carcinoma. Histopathology 2020;76(3):423-32. doi: 10.1111/his.13987 [published Online First: 2019/09/09] 49. Lee PY, Kumagai Y, Xu Y, et al. IL-1alpha modulates neutrophil recruitment in chronic inflammation induced by hydrocarbon oil. J Immunol 2011;186(3):1747-54. doi: 10.4049/jimmunol.1001328 [published Online First: 2010/12/31] 50. Cogdill AP, Andrews MC, Wargo JA. Hallmarks of response to immune checkpoint blockade. Br J Cancer 2017;117(1):1-7. doi: 10.1038/bjc.2017.136 51. Wang Y, Wang K, Han GC, et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol 2014;7(5):1106-15. doi: 10.1038/mi.2013.126 [published Online First: 2014/01/16] 52. Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019;10:1197. doi: 10.3389/fimmu.2019.01197 [published Online First: 2019/06/25] 53. Clancy-Thompson E, Perekslis TJ, Croteau W, et al. Melanoma Induces, and Adenosine Suppresses, CXCR3-Cognate Chemokine Production and T-cell Infiltration of Lungs Bearing Metastatic-like Disease. Cancer Immunol Res 2015;3(8):956-67. doi: 10.1158/2326-6066.CIR-15-0015 [published Online First: 2015/06/07] 54. Ding Q, Lu P, Xia Y, et al. CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med 2016;5(11):3246-59. doi: 10.1002/cam4.934 [published Online First: 2016/10/12] 55. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018;173(2):321-37 e10. doi: 10.1016/j.cell.2018.03.035 [published Online First: 2018/04/07] 56. Hussain MR, Baig M, Mohamoud HS, et al. BRAF gene: From human cancers to developmental syndromes. Saudi J Biol Sci 2015;22(4):359-73. doi: 10.1016/j.sjbs.2014.10.002 [published Online First: 2015/07/08] 57. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature 2002;417(6892):949-54. doi: 10.1038/nature00766 [published Online First: 2002/06/18] 58. Reddy SM, Reuben A, Wargo JA. Influences of BRAF Inhibitors on the Immune Microenvironment and the Rationale for Combined Molecular and Immune Targeted Therapy. Curr Oncol Rep 2016;18(7):42. doi: 10.1007/s11912-016-0531-z [published Online First: 2016/05/25] 59. Bonneville R, Krook MA, Kautto EA, et al. Landscape of Microsatellite Instability Across 39 Cancer Types. JCO Precis Oncol 2017;2017 doi: 10.1200/PO.17.00073 [published Online First: 2017/01/01] 60. Kautto EA, Bonneville R, Miya J, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget 2017;8(5):7452-63. doi: 10.18632/oncotarget.13918 [published Online First: 2016/12/17] 61. Colotta F, Allavena P, Sica A, et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 2009;30(7):1073-81. doi: 10.1093/carcin/bgp127 [published Online First: 2009/05/27] 62. Touat M, Ileana E, Postel-Vinay S, et al. Targeting FGFR Signaling in Cancer. Clin Cancer Res 2015;21(12):2684-94. doi: 10.1158/1078-0432.CCR-14-2329 [published Online First: 2015/06/17] 63. Yeh YH, Hsiao HF, Yeh YC, et al. Inflammatory interferon activates HIF-1alpha-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018;37(1):70. doi: 10.1186/s13046-018-0730-6 [published Online First: 2018/03/29] 64. Chabanon RM, Pedrero M, Lefebvre C, et al. Mutational Landscape and Sensitivity to Immune Checkpoint Blockers. Clin Cancer Res 2016;22(17):4309-21. doi: 10.1158/1078-0432.CCR-16-0903 [published Online First: 2016/07/09] 65. Compeer EB, Flinsenberg TW, van der Grein SG, et al. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012;3:37. doi: 10.3389/fimmu.2012.00037 [published Online First: 2012/05/09] 66. Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 2018;75(5):785-95. doi: 10.1007/s00018-017-2654-2 [published Online First: 2017/09/16] 67. Rabbani SA, Arakelian A, Farookhi R. LRP5 knockdown: effect on prostate cancer invasion growth and skeletal metastasis in vitro and in vivo. Cancer Med 2013;2(5):625-35. doi: 10.1002/cam4.111 [published Online First: 2014/01/10] 68. Xiao Q, Wu J, Wang WJ, et al. DKK2 imparts tumor immunity evasion through beta-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med 2018;24(3):262-70. doi: 10.1038/nm.4496 [published Online First: 2018/02/13] 69. Afshar-Kharghan V. The role of the complement system in cancer. J Clin Invest 2017;127(3):780-89. doi: 10.1172/JCI90962 [published Online First: 2017/03/02] 70. Castro F, Cardoso AP, Goncalves RM, et al. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018;9:847. doi: 10.3389/fimmu.2018.00847 [published Online First: 2018/05/22] 71. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014;14(1):36-49. doi: 10.1038/nri3581 [published Online First: 2013/12/24] 72. Benci JL, Xu B, Qiu Y, et al. Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell 2016;167(6):1540-54 e12. doi: 10.1016/j.cell.2016.11.022 [published Online First: 2016/12/03] 73. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 2015;523(7559):231-5. doi: 10.1038/nature14404 [published Online First: 2015/05/15] 74. Barber MA, Welch HC. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer 2006;93(5):E44-52. [published Online First: 2006/06/17] 75. Kuczek DE, Larsen AMH, Thorseth ML, et al. Collagen density regulates the activity of tumor-infiltrating T cells. J Immunother Cancer 2019;7(1):68. doi: 10.1186/s40425-019-0556-6 [published Online First: 2019/03/15] 76. Bonaventura P, Shekarian T, Alcazer V, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol 2019;10:168. doi: 10.3389/fimmu.2019.00168 [published Online First: 2019/02/26] 77. Wan YY. GATA3: a master of many trades in immune regulation. Trends Immunol 2014;35(6):233-42. doi: 10.1016/j.it.2014.04.002 [published Online First: 2014/05/03] 78. Nakshatri H, Badve S. FOXA1 in breast cancer. Expert Rev Mol Med 2009;11:e8. doi: 10.1017/S1462399409001008 [published Online First: 2009/03/06] 79. Liu Y, Carlsson R, Comabella M, et al. FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 2014;20(3):272-82. doi: 10.1038/nm.3485 [published Online First: 2014/02/18] 80. Johnson DB, Lovly CM, Flavin M, et al. Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res 2015;3(3):288-95. doi: 10.1158/2326-6066.CIR-14-0207 [published Online First: 2015/03/05] 81. Liu Y, Elf SE, Miyata Y, et al. p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell 2009;4(1):37-48. doi: 10.1016/j.stem.2008.11.006 [published Online First: 2009/01/09] 82. Wellenstein MD, Coffelt SB, Duits DEM, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 2019;572(7770):538-42. doi: 10.1038/s41586-019-1450-6 [published Online First: 2019/08/02] 83. Yan C, Huo X, Wang S, et al. Stimulation of hepatocarcinogenesis by neutrophils upon induction of oncogenic kras expression in transgenic zebrafish. J Hepatol 2015;63(2):420-8. doi: 10.1016/j.jhep.2015.03.024 [published Online First: 2015/04/02] 84. de Oliveira S, Rosowski EE, Huttenlocher A. Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 2016;16(6):378-91. doi: 10.1038/nri.2016.49 [published Online First: 2016/05/28] 85. Shang A, Gu C, Zhou C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression. Cell Commun Signal 2020;18(1):52. doi: 10.1186/s12964-020-0517-1 [published Online First: 2020/04/02] 86. Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog 2009;5(10):e1000639. doi: 10.1371/journal.ppat.1000639 [published Online First: 2009/10/31] 87. Jeong S, Yun HK, Jeong YA, et al. Cannabidiol-induced apoptosis is mediated by activation of Noxa in human colorectal cancer cells. Cancer Lett 2019;447:12-23. doi: 10.1016/j.canlet.2019.01.011 [published Online First: 2019/01/21] 88. Kirschnek S, Vier J, Gautam S, et al. Molecular analysis of neutrophil spontaneous apoptosis reveals a strong role for the pro-apoptotic BH3-only protein Noxa. Cell Death Differ 2011;18(11):1805-14. doi: 10.1038/cdd.2011.69 [published Online First: 2011/06/11] 89. Geering B, Simon HU. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ 2011;18(9):1457-69. doi: 10.1038/cdd.2011.75 [published Online First: 2011/06/04] 90. Dolgin E. Immunotherapy takes aim at exhausted T cells. Nature Biotechnology 2020;38(1):3-5. doi: 10.1038/s41587-019-0381-y 91. Sionov RV, Fridlender ZG, Granot Z. The Multifaceted Roles Neutrophils Play in the Tumor Microenvironment. Cancer Microenviron 2015;8(3):125-58. doi: 10.1007/s12307-014-0147-5 [published Online First: 2014/06/05] 92. Shen MX, Hu PP, Donskov F, et al. Tumor-Associated Neutrophils as a New Prognostic Factor in Cancer: A Systematic Review and Meta-Analysis. Plos One 2014;9(6) doi: ARTN e98259 10.1371/journal.pone.0098259 93. O'Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res 2016;44(D1):D733-45. doi: 10.1093/nar/gkv1189 [published Online First: 2015/11/11] 94. Blank CU, Haining WN, Held W, et al. Defining 'T cell exhaustion'. Nat Rev Immunol 2019;19(11):665-74. doi: 10.1038/s41577-019-0221-9 [published Online First: 2019/10/02] 95. Li F, Huang Q, Luster TA, et al. In Vivo Epigenetic CRISPR Screen Identifies Asf1a as an Immunotherapeutic Target in Kras-Mutant Lung Adenocarcinoma. Cancer Discov 2020;10(2):270-87. doi: 10.1158/2159-8290.CD-19-0780 [published Online First: 2019/11/21] 96. Aitken SJ, Ibarra-Soria X, Kentepozidou E, et al. CTCF maintains regulatory homeostasis of cancer pathways. Genome Biol 2018;19(1):106. doi: 10.1186/s13059-018-1484-3 [published Online First: 2018/08/09] 97. Chisolm DA, Savic D, Moore AJ, et al. CCCTC-Binding Factor Translates Interleukin 2- and alpha-Ketoglutarate-Sensitive Metabolic Changes in T Cells into Context-Dependent Gene Programs. Immunity 2017;47(2):251-67 e7. doi: 10.1016/j.immuni.2017.07.015 [published Online First: 2017/08/17] 98. Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol 2008;4(7):e1000029. doi: 10.1371/journal.pcbi.1000029 [published Online First: 2008/07/26] 99. Chen R, Yang L, Goodison S, et al. Deep-learning approach to identifying cancer subtypes using high-dimensional genomic data. Bioinformatics 2020;36(5):1476-83. doi: 10.1093/bioinformatics/btz769 [published Online First: 2019/10/12] | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57139 | - |
| dc.description.abstract | 隨著免疫療法的進展,許多療法都有相當大的進展。但是這些療法的成效受到癌症腫瘤所創造出的微環境很大的影響,為了瞭解癌症腫瘤微環境裡面,腫瘤和周遭的免疫細胞的交互作用,在本研究中我們根據TCGA中腫瘤樣本裡免疫和基質細胞的組成,來重新將癌症腫瘤分成四種免疫亞型:分別為發炎型(S1)、毒殺細胞型(S2)、淋巴細胞耗竭型(S3)以及中性粒細胞型(S4)。我們分別探討了這四種免疫亞型的各種特性,包含:基因變異、免疫調節基因、病人預後等等。我們發現淋巴細胞耗竭型有較差的預後,而毒殺細胞型有較好的預後且有很高的突變負荷。我們還另外發現了一些特定已知的主導基因,例如BRAF 和CTNNB1 (和免疫細胞排除有關)的突變有分別顯著出現在發炎型和淋巴細胞耗竭型,另外還有TP53、TGFBR2和KRAS的突變顯著出現在中性粒細胞型。透過分析33種癌症的腫瘤樣本,我們找出和腫瘤微環境有關的基因突變以及變異的生物路徑。根據這些結果,我們希望有助於深入了解哪些異常突變會影響不同腫瘤微環境的形成。 | zh_TW |
| dc.description.abstract | With the advent of immunotherapy, it is essential to understand the interactions between tumors and cells in the tumor microenvironment. We estimated the abundance of ten im-mune and two stromal cell populations in all TCGA tumor samples from transcriptomic data. Based on the microenvironment composition across all tumor types, we identified four consensus immune subtypes: (S1) inflammatory, (S2) cytotoxic dominant, (S3) lymphocyte depleted, and (S4) neutrophil dominant. The four immune subtypes were further characterized by mutation, expression of immunomodulatory genes, and prognosis. The lymphocyte-depleted subtype had less favorable outcomes, while cytotoxic-dominant subtype had a better prognosis and higher average mutation load. Specific driver genes correlated with immune subtypes, such as BRAF and CTNNB1 mutations were observed over-representatively in high and low leukocyte-infiltrating subtypes S1 and S3, respec-tively, where CTNNB1 has been demonstrated that its activation is correlated with immune exclusion. In addition, TP53, TGFBR2, and KRAS mutations are significantly enriched in the neutrophil dominant subtype. In this study, we analyzed data with 33 diverse cancer types to identify the tumor micro-environment-associated genes and related dysfunctional pathways. The results provide insight into how genetic aberration shapes the tumor microenvironment. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-16T06:35:56Z (GMT). No. of bitstreams: 1 U0001-2207202016040500.pdf: 12632445 bytes, checksum: d341b9ab2378be11255c85c294de0a69 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 ii 中文摘要 iii ABSTRACT iv CONTENTS v LIST OF FIGURES ix LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Cancer immunotherapy 1 1.2 Tumor Microenvironment 2 1.3 Estimation of Cell Abundance within the Tumor Microenvironments 4 1.4 Molecular Cancer Subtypes 5 1.5 Our Aims 7 Chapter 2 Materials and Methods 8 2.1 Clinical and Expression Data 8 2.2 Immune Subtype Identification 8 2.2.1 Marker Genes for Immune and Stroma Cell Types 8 2.2.2 Pan-cancer Profiling and Clustering 9 2.2.3 Exploratory Analysis of Tumor Microenvironment 10 2.2.4 Selecting the Optimal Number of Components 10 2.2.5 Tuning Regularization Weight Based on Cluster Stability 11 2.2.6 Validation with Model-based Clustering 12 2.3 Characterization of Immune Subtypes 13 2.3.1 Exploratory Analysis 13 2.3.2 Prognostic Analysis 13 2.3.3 Immunomodulator Expression Analysis 14 2.3.4 Comparison with The Immune Landscape of Cancer 14 2.4 Mutation Over-representation Analysis 15 2.4.1 Gene Level 15 2.4.2 Pathway Level 15 2.4.3 Copy Number Variation Analysis 16 2.5 Genomic Viral Content Analysis 17 2.6 Protein-Protein Interaction Network Analysis 18 2.7 Stratification of Immune Subtypes by Gene Signatures 18 2.8 Statistical Analysis 19 Chapter 3 Results 20 3.1 Portrayal of the Tumor Microenvironment with Transcriptomic Markers 20 3.2 Immune Subtypes in Cancer 21 3.2.1 Immune Subtypes have Distinct Cell Composition and Prognosis 21 3.2.2 Different Immuno-modulators Expressed in Immune Subtypes 22 3.2.3 Our Immune Subtypes Provide Complementary View 23 3.3 Genetic Aberrations and Dysfunctional Pathways in Immune Subtypes 25 3.3.1 S1 Inflammatory Subtype 26 3.3.2 S2 Cytotoxic-dominant Subtype 27 3.3.3 S3 Lymphocyte-depleted Subtype 30 3.3.4 S4 Neutrophil-dominant Subtype 31 3.4 Further Stratification of S2 and S4 Subtype 33 Chapter 4 Discussion 36 4.1 Summary of Pan-cancer Analysis of the TME 36 4.1.1 Characterization of the TME Corresponds to Previous Studies 36 4.1.2 Focusing on the Genetic Aberrations in Multiple Levels 37 4.1.3 Stratification beyond Immune Subtypes 38 4.2 Comparison between Tumor Mutations and CRISPR Screening Studies 39 4.3 Improvements of Defining Tumor Microenvironments 40 4.3.1 Limitations of Identifying the Immune Subtypes 40 4.3.2 Limitations of Mutational Over-representation Analysis 41 Chapter 5 Conclusions 42 REFERENCES 43 Figures 56 Tables 76 | |
| dc.language.iso | en | |
| dc.subject | 系統性全癌分析 | zh_TW |
| dc.subject | 癌症基因學 | zh_TW |
| dc.subject | 免疫亞型 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | 癌症免疫療法 | zh_TW |
| dc.subject | 基因突變 | zh_TW |
| dc.subject | systematic pan-cancer analysis | en |
| dc.subject | gene mutation | en |
| dc.subject | immuno-oncology | en |
| dc.subject | cancer genomics | en |
| dc.subject | immune subtypes | en |
| dc.subject | tumor microenvironment | en |
| dc.title | 以系統性全癌分析探討腫瘤突變與腫瘤微環境的關係 | zh_TW |
| dc.title | Systematic pan-cancer analysis reveals the associations of tumor mutations and microenvironment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-6880-656X | |
| dc.contributor.coadvisor | 歐陽彥正(Yen-Jen Oyang) | |
| dc.contributor.oralexamcommittee | 許家郎(Chia-Lang Hsu),黃宣誠(Hsuan-Cheng Huang),蔡懷寬(Huai-Kuang Tsai) | |
| dc.subject.keyword | 癌症基因學,腫瘤微環境,系統性全癌分析,免疫亞型,癌症免疫療法,基因突變, | zh_TW |
| dc.subject.keyword | cancer genomics,tumor microenvironment,systematic pan-cancer analysis,immune subtypes,immuno-oncology,gene mutation, | en |
| dc.relation.page | 92 | |
| dc.identifier.doi | 10.6342/NTU202001742 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-07-28 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2207202016040500.pdf 未授權公開取用 | 12.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
