Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57116
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉致為(Chee-Wee Liu)
dc.contributor.authorJiun-Ian Paien
dc.contributor.author白君彥zh_TW
dc.date.accessioned2021-06-16T06:35:20Z-
dc.date.available2019-08-14
dc.date.copyright2014-08-14
dc.date.issued2014
dc.date.submitted2014-08-03
dc.identifier.citation[1] Moore, Gordon E. 'Cramming more components onto integrated circuits.' Proceedings of the IEEE 86.1 (1998): 82-85.
[2] Dennard, Robert H., et al. 'Design of ion-implanted MOSFET's with very small physical dimensions' IEEE Journal of Solid State Circuits (1974): SC–9 (5)
[3] Clayton Hallmark, 'End of Moore’s Law and US/MSFT Bullying on World Trade ', (HTML) August 7, 2006.
[4] Wolfgang Arden, et al. 'Towards a More-than-Moore roadmap' Interuniversity Microelectronics Centre.
[5] '3D ICs with TSVs – Design Challenges and Requirements', Cadence Design Systems, Inc.
[6] Jing-Zhou Tang, 'Introduction of 3D ICs', (HTML).
[7] Dong Hyuk Woo, et al. 'An Optimized 3D-Stacked Memory Architecture by Exploiting Excessive, High-Density TSV Bandwidth' High Performance Computer Architecture (HPCA), IEEE (2010).
[8] James J-Q Lu, Ken Rose, & Susan Vitkavage '3D Integration: Why, What, Who, When?' (HTML) Future Fab Intl. Volume 23, 2007
[9] Synopsys, Inc., turning on the tap: TCAD. Retrieved July 1, 2014, from Synopsys on the World Wide Web: http://www.synopsys.com/tools/tcad/Pages/default.aspx
[10] Sentaurus Device User Guide, Version G-2012.06. Synopsys Inc., 2012.
[11] Synopsys, Inc., turning on the tap: Tools for simulating device performance.
Retrieved July 1, 2014, from Synopsys on the World Wide Web: http://www.synopsys.com/Tools/TCAD/DeviceSimulation/Pages/default.aspx
[12] HFSS User Guide, Version 10. ANSYS Inc., 2005.
[13] ANSYS, Inc., turning on the tap: ANSYS Q3D Extractor.
Retrieved July 1, 2014, from ANSYS on the World Wide Web:
http://www.ansys.com/Products/Simulation+Technology/Electronics/Signal+Integrity/ANSYS+Q3D+Extractor
[14] ANSYS, Inc., turning on the tap: ANSYS Mechanical.
Retrieved July 1, 2014, from ANSYS on the World Wide Web:
http://www.ansys.com/Products/Simulation+Technology/Structural+Analysis/ANSYS+Mechanical
[15] Kurokawa, K., 'Power Waves and the Scattering Matrix', IEEE Trans. Micr. Theory & Tech., Mar. 1965, pp. 194-202
[16] 'Wide I/O Single Data Rate (Wide I/O SDR)', JEDEC Solid State Technology Association
[17] Jonghyun Cho, et al. 'Modeling and Analysis of Through-Silicon Via (TSV) Noise Coupling and Suppression Using a Guard Ring' IEEE Transactions on Components, Packaging, and Manufacturing Technology, VOL. 1, NO. 2, February 2011
[18] Srinidhi Raghavan Narasimhan, 'High Frequency Signal Propagation in Through Silicon Vias', 2012
[19] Chenming Calvin Hu, 'Modern Semiconductor Devices for Integrated Circuits', Ch5, 2010
[20] Tapobrata Bandyopadhyay, et al. 'Rigorous Electrical Modeling of Through Silicon Vias (TSVs) with MOS Capacitance Effects' IEEE Transactions on Components, Packaging, and Manufacturing Technology, VOL. 1, NO. 6, June 2011
[21] Emre Salman, 'Noise Coupling Due To Through Silicon Vias (TSVs) in 3-D Integrated Circuits' Circuits and Systems (ISCAS), 2011 IEEE International Symposium on
[22] Jonghyun Cho, et al. 'Guard ring effect for through silicon via (TSV) noise coupling reduction' CPMT Symposium Japan, 2010 IEEE
[23] Ramm, P; Wolf M.J, A. Klumpp, R. Wieland, B. Wunderle, B. Michel: “Processes and Reliability for Wafer-Level 3D System Integration”; Proc 58th Electronic Components and Technology Conf, Orlando, FL, 2008 [24] Yuan Taur and Tak H. Ning, ' Fundamentals of Modern VLSI Devices ' Second Edition, Chapter 2, June 2013
[25] Neil H. E. Weste and David Money Harris, 'Integrated Circuit Design' Fourth Edition, Chapter 6, 2011
[26] Guruprasad Katti, et al. 'Through-Silicon-Via Capacitance Reduction Technique to Benefit 3-D IC Performance' IEEE Electron Device Letters, VOL. 31, NO. 6, JUNE 2010
[27] B. B. Dasgupta, 'Anomalous Skin Effect in a Cylindrical Conductor' Physica Status Solidi (a) 91, 235, subject classification: 14.1, 1985.
[28] Collin, Robert E., 'Foundations for Microwave Engineering', Second Edition, December 2000.
[29] Okoro, C.; IMEC, et al. 'Extraction of the Appropriate Material Property for Realistic Modeling of Through-Silicon-Vias using μ-Raman Spectroscopy' Interconnect Technology Conference, 2008. IITC 2008. International
[30] Hae-A-Seul Shin, et al. 'Microstructure Evolution and Defect Formation in Cu Through-Silicon Vias (TSVs) During Thermal Annealing' Journal of Electronic Materials, Vol. 41, No. 4, 2012
[31] Pradeep Dixit, et al. 'Numerical and Experimental Investigation of Thermomechanical Deformation in High-Aspect-Ratio Electroplated Through-Silicon Vias' Journal of The Electrochemical Society, 155 (12) H981-H986, 2008
[32] Kuan H. Lu, et al. 'Thermo-Mechanical Reliability of 3-D ICs containing Through Silicon Vias' Electronic Components and Technology Conference, 2009.
[33] ANSYS, 'Basic Analysis Procedures Guide' Release 12.0, April 2009
[34] T.R. Kane, R.D. Mindlin, 'High-frequency extensional vibrations of plates' J. Appl. Mech., vol. 23, pp.277-283, (1956).
[35] Sun-Rong Jan, et al. 'A Compact Analytic Model of the Strain Field Induced by Through Silicon Vias' IEEE Transactions on Electron Devices, VOL. 59, NO. 3, March 2012.
[36] Krit Athikulwongse, et al. 'Stress-Driven 3D-IC Placement with TSV Keep-Out Zone and Regularity Study' Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on.
[37] Siddhartha Dhar, 'Analytical Mobility Modeling for Strained Silicon-Based Devices' Chapter 3, 2007.
[38] Jasprit Singh, 'Electronic and Optoelectronic Properties of Semiconductor Structures' Chapter 3, 2003.
[39] W. Guo, et al. 'Copper Through Silicon Via Induced Keep Out Zone for 10nm Node Bulk FinFET CMOS Technology' IEDM 2013, 12.8.1
[40] Suk-Kyu Ryu, et al. 'Effect of Thermal Stress on Carrier Mobility and Keep-Out Zone Around Through Silicon Vias for 3-D Integration' IEEE Transactions on Device and Materials Reliability, Vol. 12, No. 2, June 2012.
[41] Y. Sun, S. Thompson, and T. Nishida, 'Strain Effect in Semiconductors: Theory and Device Applications' New York: Springer-Verlag, 2010.
[42] J. West, et al. 'Practical Implications of Via-Middle Cu TSV-induced Stress in a 28nm CMOS Technology for Wide-IO Logic-Memory Interconnect' VLSI Technology Digest of Technical Papers, 2012 Symposium on
[43] Geert Van der Plas, et al. ' 3D System Integration: Technology and Design' Imec, VLSI Technology Short Course, 2014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57116-
dc.description.abstract半導體工業根據摩爾定律,將元件持續進行微縮,以達到更高的效能和更小的面積。但在未來十年,製程技術將面臨瓶頸,且傳統的矽金氧半電晶體的微縮將達到其極限,為了維持摩爾定律,解決方法除了改變電晶體的結構,例如以三維結構的鰭式場效應電晶體或環繞式閘極電晶體取代平面式電晶體,另一個有效方案就是三維積體電路。其中,直通矽穿孔為晶片三維堆疊之重要技術,透過晶片的垂直互連,使得導線路徑更短、傳輸速度更快、消耗功率更低,進一步提高系統的整合度與效能,也降低了晶片的面積,此即為三維積體電路的基礎概念。本篇論文的主軸為模擬矽穿孔在傳遞信號時之插入損耗與雜訊耦合,以及此結構所造成之熱應力對周圍元件電流的影響,並提出矽穿孔周圍元件隔離區的模型。首先,本論文提出一個新的方法,結合高頻電磁效應,如電感和集膚效應,於半導體模擬軟體中,因此可以更正確地計算出傳遞信號在各頻率下的損耗及耦合,並與高頻結構模擬軟體作比較,結果是一致的。第二,由於矽穿孔填充的銅和矽基板熱膨脹係數的差異,會對矽基板產生拉伸和壓縮的應變,可能造成元件電流不當的變化,甚至破壞元件。本論文利用數學模型,加上有限元素模擬軟體分析其熱應力之分布,進一步推導隔離區的模型,可以做為電路設計之準則。最後,額外考慮覆晶封裝中的焊接金屬凸塊對於動態隨機存取記憶體,以及背對面的晶片接合所產生之熱應力,更完整的分析和探討矽穿孔技術可能會遭遇到的問題。zh_TW
dc.description.abstractThe semiconductor industry has followed the scaling rules according to Moore’s Law. Transistor dimensions have been scaled by 30% every technology generation in order to develop smaller and faster integrated circuits. However, the semiconductor manufacturing technology will meet a bottleneck in 10 years, and the conventional Si MOSFETs will reach scaling limits. Several available solutions are proposed for the continuation of Moore’s Law, such as replacing planar MOSFETs by FinFETs and GAA-FETs. Another promising option is 3D ICs.
Through silicon via (TSV) technology is very important and high performance in 3D ICs and 3D packages. The basic concept of 3D ICs is the vertical electrical connection passing through a wafer or die by using TSVs. The electrical paths can be enormously shortened, and the chip area can also be saved by stacking silicon wafers and/or dies. Moreover, it provides heterogeneous integration of different circuit layers, which is more efficient than traditional ICs.
This thesis focuses on the insertion loss, noise coupling and thermal stress of TSV structures. In the first part, we proposed a new method to incorporate electromagnetic effects like inductances and the skin effect into TCAD simulation, and the results are consistent with that of the electromagnetic simulation tool: HFSS. When signals propagate along TSVs, the signal integrity is affected by the depletion region and oxide charges. These realistic conditions are involved in our modified TCAD simulation, so a more accurate simulation result of the insertion loss and noise coupling can be achieved. We also investigated the TSV-induced stress, which is due to the different thermal expansion coefficient between the copper pillar and silicon substrate after annealing. It results in a significant carrier mobility variation in the devices. We derived a comprehensive keep-out zone model which defines a forbidden area for devices in order to prevent large current variations. The stress distributions in a Wide I/O TSV array, and the thermal stresses induced by micro-bumps were also investigated. Thus, we give a thoroughly study and analysis on TSV technology in this thesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:35:20Z (GMT). No. of bitstreams: 1
ntu-103-R01941073-1.pdf: 2972612 bytes, checksum: 4dba882087d68f193c03448301f06ff9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試委員會審定書 #
摘 要 i
ABSTRACT ii
LIST OF FIGURES iv
LIST OF TABLES viii
CONTENTS ix
Chapter 1 Introduction - 1 -
1.1 Background and Motivation - 1 -
1.2 Simulation Tools - 5 -
1.3 Thesis Organization - 7 -
Chapter 2 The Signal Integrity of Through Silicon Via Structures - 9 -
2.1 Introduction - 9 -
2.2 The Loss and Crosstalk Analysis by HFSS - 10 -
2.2.1 The Scattering Parameters - 11 -
2.2.2 The EM Simulation and Equivalent RLC Modeling of TSVs - 12 -
2.2.3 Guard Ring Effect for TSV Noise Coupling Reduction - 19 -
2.3 The Capacitance-Voltage and Signal Integrity Analysis by TCAD - 22 -
2.3.1 Capacitance-Voltage Characteristics of a TSV - 23 -
2.3.2 Skin Depth Extraction - 27 -
2.3.3 Self and Mutual Inductance Extraction - 31 -
2.3.4 The Incorporation of Electromagnetic Effects on TSVs in TCAD Simulation - 33 -
2.4 Summary - 37 -
Chapter 3 Strain Fields Around TSVs and Keep-Out Zone Modeling - 39 -
3.1 Introduction - 39 -
3.2 Simulation of Thermal Stress Induced by TSVs - 40 -
3.3 Analytical Model of Strain and Stress Fields - 43 -
3.4 Keep-Out Zone Modeling - 47 -
3.4.1 Current Variation Induced by Strain Effect - 47 -
3.4.2 Device and Stress Interaction - 51 -
3.5 Graphical Expression of Keep-Out Zone - 58 -
3.6 A Method to Reduce Keep-Out Zone - 63 -
3.7 Summary - 66 -
Chapter 4 Thermal Stress of Through Silicon Via Array and Micro-Bumps - 68 -
4.1 Introduction - 68 -
4.2 Boundary Conditions of a TSV Array - 68 -
4.3 Stresses Induced by Micro-Bumps - 76 -
4.4 Summary - 77 -
Chapter 5 Summary and Future Work - 80 -
5.1 Summary - 80 -
5.2 Future Work - 82 -
REFERENCES - 84 -
dc.language.isoen
dc.subject矽穿孔zh_TW
dc.subject隔離區zh_TW
dc.subject熱應力zh_TW
dc.subject雜訊耦合zh_TW
dc.subject插入損耗zh_TW
dc.subject三維積體電路zh_TW
dc.subjectkeep-out zoneen
dc.subjectthermal stressen
dc.subject3D ICsen
dc.subjectnoise couplingen
dc.subjectinsertion lossen
dc.subjectTSVen
dc.title三維積體電路矽穿孔結構之信號完整性及隔離區模型建立zh_TW
dc.titleThe Signal Integrity and Keep-Out Zone Modeling of Through Silicon Via Structures in 3D ICsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張書通(Shu-Tong Chang),劉國辰(Kou-Chen Liu),林吉聰(Jyi-Tsong Lin),林中一(Chung-Yi Lin)
dc.subject.keyword三維積體電路,矽穿孔,插入損耗,雜訊耦合,熱應力,隔離區,zh_TW
dc.subject.keyword3D ICs,TSV,insertion loss,noise coupling,thermal stress,keep-out zone,en
dc.relation.page89
dc.rights.note有償授權
dc.date.accepted2014-08-04
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved