請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57114
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳旭昇(Shiu-Sheng Chen) | |
dc.contributor.author | Chia-Yi Yen | en |
dc.contributor.author | 顏嘉儀 | zh_TW |
dc.date.accessioned | 2021-06-16T06:35:17Z | - |
dc.date.available | 2017-08-08 | |
dc.date.copyright | 2014-08-08 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-04 | |
dc.identifier.citation | References
[1] Amihud, Y. (2002). Illiquidity and stock returns: cross-section and time-series e ects. Journal of nancial markets, 5(1):31{56. [2] Amihud, Y. and Mendelson, H. (1986). Asset pricing and the bid-ask spread. Journal of nancial Economics, 17(2):223{249. [3] Amihud, Y. and Mendelson, H. (1989). The e ects of beta, bid-ask spread, residual risk, and size on stock returns. The Journal of Finance, 44(2):479{486. [4] Bade, R. and Parkin, M. (2007). Foundations of economics. Pearson Addison Wesley. [5] Beber, A. and Brandt, M. W. (2010). When it cannot get better or worse: The asymmetric impact of good and bad news on bond returns in expansions and recessions*. Review of Finance, 14(1):119{155. [6] Brennan, M. J. and Subrahmanyam, A. (1996). Market microstructure and asset pricing: On the compensation for illiquidity in stock returns. Journal of nancial economics, 41(3):441{464. [7] Brunnermeier, M. K. and Pedersen, L. H. (2009). Market liquidity and funding liquidity. Review of Financial studies, 22(6):2201{2238. [8] Burns, A. F. and Mitchell, W. C. (1946). Measuring business cycles. NBER Books. [9] Del Negro, M. (2001). Turn, turn, turn: predicting turning points in economic activity. Economic Review, (Q2):1{12. [10] Diebold, F. X. and Lopez, J. A. (1996). Forecast evaluation and combination. [11] Diebold, F. X. and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business amp; Economic Statistics, 13(3):253{263. [12] Dueker, M. J. (1997). Strengthening the case for the yield curve as a predictor of us recessions. Federal Reserve Bank of St. Louis Review, 79(March/April 1997). [13] Estrella, A. and Mishkin, F. S. (1998). Predicting us recessions: nancial variables as leading indicators. Review of Economics and Statistics, 80(1):45{61. [14] Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns. the Journal of Finance, 47(2):427{465. [15] Fujimoto, A. (2004). Macroeconomic sources of systematic liquidity. Unpublished working paper, University of Alberta. [16] Gibson, R. and Mougeot, N. (2004). The pricing of systematic liquidity risk: Empirical evidence from the us stock market. Journal of banking & nance, 28(1):157{178. [17] Goyenko, R. Y., Holden, C. W., and Trzcinka, C. A. (2009). Do liquidity measures measure liquidity? Journal of Financial Economics, 92(2):153{181. [18] Guha, D. and Hiris, L. (2002). The aggregate credit spread and the business cycle. International Review of Financial Analysis, 11(2):219{227. [19] Hamilton, J. D. and Kim, D. H. (2002). A re-examination of the predictability of the yield spread for real economic activity. Journal of Money, Credit, and Banking, 34(2):340{360. [20] Hamilton, J. D. and Lin, G. (1996). Stock market volatility and the business cycle. Journal of Applied Econometrics, 11(5):573{593. [21] Harvey, C. R. (1988). The real term structure and consumption growth. Journal of Financial Economics, 22(2):305{333. [22] Hlavac, M. (2014). stargazer: LaTeX/HTML code and ASCII text for well-formatted regression and summary statistics tables. Harvard University, Cambridge, USA. R package version 5.1. [23] Keim, D. B. and Madhavan, A. (1996). The upstairs market for large-block transactions: Analysis and measurement of price e ects. Review of Financial Studies, 9(1):1{36. [24] Kessel, R. A. (1971). The cyclical behavior of the term structure of interest rates. In Essays on Interest Rates, Vol. 2, pages 337{390. UMI. [25] Koenig, E. F. and Emery, K. M. (1991). Misleading indicators? using the composite leading indicators to predict cyclical turning points. Economic and Financial Policy Review, (Jul):1{14. [26] Kraus, A. and Stoll, H. R. (1972). Price impacts of block trading on the new york stock exchange. The Journal of Finance, 27(3):569{588. [27] Kwiatkowski, D., Phillips, P. C., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of econometrics, 54(1):159{178. [28] Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica: Journal of the Econometric Society, pages 1315{1335. [29] Laurent, R. D. (1988). An interest rate-based indicator of monetary policy. Federal Reserve Bank of Chicago Economic Perspectives, 12(1):3{14. [30] Lesmond, D. A., Ogden, J. P., and Trzcinka, C. A. (1999). A new estimate of transaction costs. Review of Financial Studies, 12(5):1113{1141. [31] Levine, R. and Zervos, S. (1998). Stock markets, banks, and economic growth. American economic review, pages 537{558. [32] McQueen, G. and Roley, V. V. (1993). Stock prices, news, and business conditions. Review of nancial studies, 6(3):683{707. [33] N s, R., Skjeltorp, J. A., and degaard, B. A. (2011). Stock market liquidity and the business cycle. The Journal of Finance, 66(1):139{176. [34] O'Hara, M. (2004). Liquidity and nancial market stability. National Bank of Belgium Working Paper, (55). [35] Roll, R. (1984). A simple implicit measure of the e ective bid-ask spread in an e cient market. The Journal of Finance, 39(4):1127{1139. [36] Schwert, G. W. (1989). Business cycles, nancial crises, and stock volatility. In Carnegie-Rochester Conference Series on Public Policy, volume 31, pages 83{125. Elsevier. [37] Schwert, G. W. (1990). Stock volatility and the crash of'87. Review of nancial Studies, 3(1):77{102. [38] S oderberg, J. (2008). Do macroeconomic variables forecast changes in liquidity? an out-of-sample study on the order-driven stock markets in scandinavia. Technical report, Centre for Labour Market Policy Research (CAFO), School of Business and Economics, Linnaeus University. [39] Stock, J. H. and Watson, M. W. (2003). Has the business cycle changed and why? In NBER Macroeconomics Annual 2002, Volume 17, pages 159{230. MIT press. [40] Wheelock, D. C. and Wohar, M. E. (2009). Can the term spread predict output growth and recessions? a survey of the literature. Federal Reserve Bank of St. Louis Review, 91(September/October 2009). [41] Wright, J. H. (2006). The yield curve and predicting recessions. Divisions of Research & Statistics and Monetary A airs, Federal Reserve Board. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57114 | - |
dc.description.abstract | 本文呈現市場流動性與景氣循環之緊密關係。 當景氣較差時,市場參與者透過調整其投資組合而獲得較高流動性,有較高風險或較不流動的資產將首先被剔除於投資組合之外,此極所謂「爭取流動性」(“flightto liquidity”) 假說。奠基於「爭取流動性」假說,我們以動態機率單位模型 (dynamic probit model)與靜態機率單位模型 (staticprobit model) 進行分析。我們使用 Amihud (2002) 所提出的流動性指標 ILR,藉此捕捉市場的流動性; 我們使用美國景氣週期測定委員會(NBER) 所宣佈的景氣燈號,藉此認定經濟體的衰退期。由動態機率單位模型分析結果顯示,對於預測未來景氣衰退,流動性並無法貢獻顯著的預測力,景氣燈號的落後期才是真正重要的預測因子。然而,景氣燈號通常為事後宣佈,在做預測的當期並無法獲得,使得動態機率單位模型在現實中並不可行。考慮到資料在當期能否取得,我們引進靜態機率單位模型。在靜態模型中,流動性扮演了重要的角色,在樣本內外都改善了模型的預測力。同時我們也發現,若我們將流動性來源分為大公司與小公司,後者才是改善預測景氣衰退的主力。透過實證研究,我們發現 「爭取流動性」 假說可以在美國市場成立,並且,依據此假說,我們可以透過一個簡單的靜態機率單位模型,對未來景氣燈號進行預測。 | zh_TW |
dc.description.abstract | In this paper, we discuss the relation between liquidity and the business cycle.There are some reasons that we should link liquidity with the business cycle. The“flight to liquidity” or “flight to quality” hypothesis might be the most important one. It is more likely that an investor shifts his portfolio from those stocks with lower liquidity or higher risk when the economy is in a recession.Instead of
business cycle measures, we use the NBER recession signal as the proxy of real economy. We apply dynamic and static probit model to monthly liquidity proxy, because the NBER recession is not always available in current period. Besides we use Amihud (2002) ILR as our liquidity proxy.The dynamic probit model with liquidity added does not result in a significance improvement on prediction. No matter in sample or out of sample, the pure dynamic probit model performs well with itself history only. However, as we mentioned earlier, NBER recession signal is usually announced well until the recession has happened for months, leading to an infeasibility to implement dynamic model. On the other hand, liquidity plays an important role in static probit model. We find a robust positive relation between liquidity and recession. Adding liquidity as a predictor in the static model would significantly improve the forecast accuracy in th short horizon. This observation remains robust with comparison to other financial variables ( e.g. term spread, credit spread, market volatility, and excess return). We also find the existence of “size effect” that small firm is more sensitive to future recession. Our finding above is consistent with our claims of “flight to liquidity; that is, it is more likely for market participants to shift his portfolio from those stock with lower liquidity or higher risk in advance when the economy would be in a recession. The primary contribution of this paper is that liquidity proxy, Amihud’s liquidity proxy here, does provide useful information when predicting the future recession. We find that the liquidity proxy performs well especially in a short prediction horizon. Besides, the liquidity of small firms is more informative in prediction. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:35:17Z (GMT). No. of bitstreams: 1 ntu-103-R01323019-1.pdf: 1236562 bytes, checksum: 529e5e77f3dc4c5e4b5b266a7ecf9c62 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
The Authorization of Oral Members for Research Dissertation i Acknowledgement ii Abstract iii List of Figures viii List of Tables ix 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Why liquidity matters? . . . . . . . . . . . . . . . . . . . . . 1 What is liquidity? . . . . . . . . . . . . . . . . . . . . 1 Why study liquidity? . . . . . . . . . . . . . . . . . . 2 Why does liquidity play an important role? . . . . . 3 1.1.2 Market liquidity and the business cycle . . . . . . . . . . . . 3 What is the business cycle? . . . . . . . . . . . . . . 3 The possible predictor of the business cycle . . . . . . 4 Evidences that liquidity is related to the business cycle 4 1.1.3 predict recessions' or predict business cycle measures'? . 5 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Data 8 2.1 Liquidity Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 The construction of Amihud's ILR . . . . . . . . . . . . . . . . . . 10 2.3 Dating recession . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Macro Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Unit root test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 Econometric Methodology 20 3.1 Probit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 In-sample predictive ability . . . . . . . . . . . . . . . . . . . . . . 22 3.3 Out-of-sample performance . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Extended model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5 Firm size and the informative content of liquidity . . . . . . . . . . 27 4 Empirical Results 28 4.1 The dynamic probit model . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 The in-sample signi_cance of ILR . . . . . . . . . . . . . . . 29 4.1.2 Does ILR really improve predictive ability? . . . . . . . . . . 30 4.1.3 The failure of ILR in out-of-sample performance . . . . . . . 32 4.1.4 The source of predictive ability - recession its own history . 34 4.2 The static probit model . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.1 Evidence that ILR does improve predictive ability . . . . . . 39 4.2.2 The success of ILR in out-of-sample performance . . . . . . 45 4.2.3 The source of predictive ability - ILR of small _rm . . . . . 46 5 Conclusion 50 Bibliography 53 | |
dc.language.iso | en | |
dc.title | 初探 Amihud 流動性指標對景氣循環之預測力 | zh_TW |
dc.title | Does market liquidity predict future recessions? An empirical study of Amihud's liquidity proxy | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張勝凱(Sheng-Kai Chang),周有熙(Yu-Hsi Chou) | |
dc.subject.keyword | Amihud 流動性指標,預測 NBER 景氣燈號,爭取流動性假說,機率單位模型,美國市場, | zh_TW |
dc.subject.keyword | Amihud liquidity proxy,NBER recession signal prediction,“flight to liqudity” hypothesis,probit model,united state market, | en |
dc.relation.page | 56 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-04 | |
dc.contributor.author-college | 社會科學院 | zh_TW |
dc.contributor.author-dept | 經濟學研究所 | zh_TW |
顯示於系所單位: | 經濟學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。