Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57099
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭光宇(Guang-Yu Guo)
dc.contributor.authorShu-Wei Linen
dc.contributor.author林書緯zh_TW
dc.date.accessioned2021-06-16T06:34:55Z-
dc.date.available2016-08-08
dc.date.copyright2014-08-08
dc.date.issued2014
dc.date.submitted2014-08-03
dc.identifier.citation[1]J. S. Moodera and P. LeClair, Nat. Mater. 2, 707 (2003).
[2]M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, Phys. Rev. Lett. 61, 2472 (1988).
[3]G. Binasch, P. Grnberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).
[4]W. H. Bultler, Sci. Technol. Adv. Mater. 9, 014106 (2008).
[5]W. H. Butler, X.-G. Zhang, and T. C. Schulthess, T. C. and MacLaren, J. M., Phys. Rev. B 63, 054416 (2001).
[6]J. Mathon and A. Umerski, Phys. Rev. B 63, 220403 (2001).
[7]J. Faure-Vincent, C. Tiusan, E. Jouguelet, F. Canet, M. Sajieddine, C. Bellouard, E. Popova, M. Hehn, F. Montaigne, and A. Schuhl, Appl. Phys. Lett 82, 4507 (2003).
[8]H. X. Yang, M. Chshiev, B. Dieny, J. H. Lee, A. Manchon, K. H. Shin, Phys. Rev. B 84, 054401 (2011).
[9]S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice and B. Hughes, Nat. Mater. 3, 862-867 (2004).
[10]S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki and K. Ando, Nat. Mater. 3, 868-871 (2004).
[11]J. C. Slonczewski, J. Magn. Magn Mater. 159, L1 (1996).
[12]A. Ney, C. Pampuch, R. Koch and K. H. Ploog., Nature 425, 485 (2003).
[13]L. Berger, Phys. Rev. B 54, 9353 (1996).
[14]IBM Corporation, Hard disk trends,
Available at: http://www-03.ibm.com/systems/storage/
[15]J. Z. Sun, J. Magn. Magn Mater. 202, 157 (1999).
[16]Wikipedia, Tunneling magnetoresistance,
Available at: http://en.wikipedia.org/wiki/Tunnel_magnetoresistance
[17]M. Born and J. R. Oppenheimer, Annalen der Physik 84, 457 (1927).
[18]L. H. Thomas, Proc. Cambridge Phil. Soc 23, 542 (1927).
[19]E. Fermi, Rend. Accad. Naz. Lincei 6, 602 (1927).
[20]P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[21]W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[22]閻守勝, 固態物理概論, 五南圖書出版股份有限公司 (2006).
[23]U. V. Barth and L.Hedin, J. Phys. C: Solid State Phys. 5, 1629 (1972); J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[24]D. C. Langreth and M. J. Mehl, Phys. Rev. B 28, 1809 (1983); A. D. Becke, Phys. Rev. A 38, 3098 (1988); J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); 48, 4978(E) (1993).
[25]Y. Wang and J. P. Perdew, Phys. Rev. B 44, 13298 (1991).
[26]R. G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press (1994).
[27]P. A. M. Dirac, Proc. Cambridge Phil. Roy. Soc. 26, 376 (1930).
[28]F. Bloch Z. Physik, 57 549 (1929).
[29]D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[30]U. V. Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
[31]陳志寰, 碩士論文: 第一原理理論計算研究3d過渡元素自旋螺旋狀鋸齒型原子鏈與稀土元素釓磁振子能譜, 國立臺灣大學 (2011).
[32]P. E. Blöcjl, Phys. Rev. B 50, 17953 (1994); G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
[33]E. Y. Tsymbal, Methods for Calculating Band Structure,
Available at: http://physics.unl.edu/tsymbal/teaching/SSP-927/index.shtml
[34]A. Rezi and M. Allam, 'Techniques in array processing by means of transformations,' in Control and Dynamic Systems, Vol. 69, Multidimensional Systems, C. T. Leondes, Ed. San Diego: Academic Press, 1995, pp. 133-180.
[35]Wikipedia, Spin-orbit interaction,
Available at: http://en.wikipedia.org/wiki/Spin_orbit_coupling
[36]R. M. White, Quantum Theory of Magnetism: Magnetic Properties of Materials, 3rd edition, Springer (2007).
[37]Wikipedia, Wigner-Eckart theorem,
Available at: http://en.wikipedia.org/wiki/Wigner-Eckart_theorem
[38]N. F. Mott, Proc. R. Soc. 153, 699 (1936).
[39]R. Landauer, IBM J. Res. Develop. 1, 223 (1957).
[40]M. Julliere, Phy. Lett. A 54, 225 (1975).
[41]X.-G. Zhang and W. H. Butler, J. Phys.: Condens. Matter 15, R1603 (2003).
[42]ChemWiki, Single electron orbitals, Available at: http://chemwiki.ucdavis.edu/@api/deki/files/4826/=Single_electron_orbitals.jpg
[43]G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).
[44]G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
[45]G. Kresse and J. Furthmuller, J. Comput. Mater. Sci. 6, 15 (1996).
[46]C. Kittel, Introduction to Solid State Physics, 8th edition. Hoboken, NJ: John Wiley and Sons, Inc, (2005).
[47]R. W. G. Wyckoff, Crystal Structure, Vol. 1, Interscience, Publishers (John Wiley), New York (1965).
[48]C. MacGillavry and G. D. Rieck, International Tables for X-ray Crystallography, Vol. 3, Riedel, Dordrecht, (1985).
[49]H. L. Meyerheim, R. Popescu, J. Krischner, N. Jedrecy, M. Sauvage-Simkin, B. Heinrich, and R. Pinchaux, Phys. Rev. Lett. 87, 076102 (2001).
[50]H. X. Yang, M. Chshiev, A. Kalitsov, A. Schuhi, and W. H. Bultler, Appl. Phys. Lett 96, 262509 (2010).
[51]J. W. Koo, S. Mitani, T. T. Sasaki, H. Sukegawa, Z. C. Wen, T. Ohkubo, T. Niizeki, K. Inomata, and K. Hono, Appl. Phys. Lett. 103, 192401 (2013).
[52]P. Bruno, Phys. Rev. B 39, 865 (1989).
[53]P. Bruno, Phys. Rev. 52, 411 (1995).
[54]L. Stöhr and H. Siegmann, Magnetism from: fundamentals to nanoscale dynamics, Springer (2006).
[55]S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. D. Gan, M. Endo, S. Kanai, J. Hayakawa, F. Matsukura, and H. Ohno, Nature Mater. 9, 271 (2010).
[56]A. Manchon, S. Pizzini, J. Vogel, V. Uhl´ir, L. Lombard, C. Ducruet, S. Auffret, B. Rodmacq, B. Dieny, M. Hochstrasser, and G. Panaccione, J. Magn. Magn. Mater. 320, 1889 (2008).
[57]K. H. Khoo, G. Wu, M. H. Jhon, M. Tran, F. Ernult, K. Eason, H. J. Choi, and C. K. Gan1, Phys. Rev. B 87, 174403 (2013).
[58]J. Mathon and A. Umerski, Phys. Rev. B 63, 220403 (2001).
[59]J. Wrona, J. Langer, B. Ocker, W. Maass, J. Kanak, T. Stobiecki, and W. Powroźnik, J. Phys.:Conf. Ser. 200, 052032 (2010).
[60]J. C. Tung and G. Y. Guo, Phys. Rev. B 81, 094422 (2010).
[61]M. K. Niranjan, C.-G. Duan, S. S. Jaswal,1 and E. Y. Tsymbal, Appl. Phys. Lett. 96, 222504 (2010).
[62]A. Hallal, H. X. Yang, B. Dieny, and M. Chshiev, Phys. Rev. B 88, 184423 (2013).
[63]M. Yamanouchi, R. Koizumi, S. Ikeda, H. Sato, K. Mizunuma, K. Miura, H. D. Gan, F. Matsukura, and H. Ohno, J. Appl. Phys. 109, 07C712 (2011).
[64]R. J. Soulen, R. J. Soulen Jr., J. M. Byers, M. S. Osofsky, B. Nadgorny, T. Ambrose, S. F. Cheng, P. R. Broussard, C. T. Tanaka, J. Nowak, J. S. Moodera, A. Barry, and J. M. D. Coey, Science 282, 85 (1998).
[65]S.-M. Ahn and G. S. D. Beach, J. Appl. Phys. 111, 07C723 (2012).
[66]V. J. Demikhovskijj, Quantum well,
Available at: http://eng.thesaurus.rusnano.com/wiki/article937
[67]Y. Miura, M. Tsujikawa, and M. Shirai, J. Appl. Phys. 113, 233908 (2013).
[68]S.-M. Ahn and G. S. D. Beach, J. Appl. Phys. 113, 17C112 (2013).
[69]P. W. T. Pong and W. F. Egelhoff, J. Appl. Phys. 105, 07C915 (2009).
[70]S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004).
[71]K. Lee, J. J. Sapan, S. H. Kang, and E. E. Fullerton, J. Appl. Phys. 109, 123910 (2011).
[72]K. Tsunekawa et al, Digests of the IEEE Int. Magnetics Conf. (Intermag, Nagoya, Japan) HP-08 (2005).
[73]S. Yuasa and D. D. Djayaprawira, J. Phys. D: Appl. Phys. 40 R337–R354 (2007).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57099-
dc.description.abstract近年來,人們發現鐵/鉻/鐵三層材料組成的結構物質具有巨磁阻的現象。巨磁阻為磁阻效應的一種,可以在磁性材料和非磁性材料相間的薄膜層結構中觀察到。這種結構物的電阻值與鐵磁性材料薄膜層的相對磁化方向有關,兩層磁性材料磁化方向相反情況下的電阻值,明顯大於磁化方向相同時的電阻值,使得電阻在微弱的外加磁場下具有很大的變化量。巨磁阻效應已被成功地運用在硬碟生產上,具有重要的商業應用價值,而造成巨磁阻的現象主要是由於鐵磁材料其自旋能帶在費米能級附近分裂的特性,造成自旋態密度在費米能級的差異。由於巨磁阻的發現,用來操縱電子自旋自由度的自旋電子學成為物理上重要的一項領域。
我們利用第一原理計算探討鐵/氧化鎂/鐵穿隧結具有高垂直磁異向能以及高穿隧磁阻的物理原因。在我們的研究中,這是由於在鐵/氧化鎂界面上氧化鎂中的氧與鐵鍵結,導致界面鐵具有一個高自旋極化率的表面態,另外由於在界面上對稱性的破壞,導致界面鐵的能帶由於自旋軌道耦合效應產生分裂的現象,進而發生系統能量對磁矩方向的相關性。第二部分,我們使用第一原理理論計算鐵/氧化鎂/鐵穿隧結在外加覆蓋層(cap)後,對其所造成的物理性質變化。我們分別計算了氧化鎂、釕、鉭,這三種材料並且探討其穿隧磁阻與垂直磁異向性的變化,我們發現這三種材料在與鐵的界面上分別呈現非磁性、鐵磁以及反鐵磁的耦合效應,其中反鐵磁性的鉭對於鐵/氧化鎂/鐵穿隧結的穿隧磁阻具有最好的增強效果,而非磁性絕緣體的氧化鎂對於垂直磁異向能則具有最佳的表現。
zh_TW
dc.description.abstractRecent studies have reported giant magnetoresistance (GMR) in Fe/Cr/Fe trilayer systems. This phenomenon usually occurs in systems consisting of two magnetic electrodes separated by one nonmagnetic metallic layer. Due to the dependence of the electric resistance on the relative magnetization directions in the two magnetic electrodes, the antiparallel magnetization can produce an electric resistance that is stronger than the parallel magnetization. Thus, applying a weak magnetic field can cause a large variation of electric resistance. This dependence of electric resistance on magnetization directions originates from the electronic energy band that splits near the Fermi level in magnetic materials, which results in the different spin density of states at Fermi level. Therefore, the discovery of GMR brought about the spintronics, which exploits the spin-degree of freedom, to be an important branch of physics.
We have performed the first principle calculations to study the physical properties of the Fe/MgO/Fe trilayer system, which has been shown to have the large perpendicular magnetic anisotropy (PMA) and tunneling magnetoresistance (TMR). In the present work, these properties are due to the hybridization between the iron and the oxygen at the Fe/MgO interface, which leads to a surface state with a large spin-polarization. Furthermore, due to the broken symmetry at that interface, if the spin-orbit coupling is taken into account, the energy band of the interfacial Fe would split, leading to an energy dependence of the magnetization direction. In the second part of this thesis, the first principle calculation is performed to study the influences on PMA and TMR when the Fe/MgO/Fe is capped with some materials. Here the MgO, Ta and Ru capping layers are considered, and they reveals nonmagnetic, antiferromagnetic and ferromagnetic coupling to the Fe layer, respectively. In the Fe/MgO/Fe trilayer systems, TMR is usually largest in the Ta-cap systems whereas PMA is usually largest in the MgO-cap systems.
en
dc.description.provenanceMade available in DSpace on 2021-06-16T06:34:55Z (GMT). No. of bitstreams: 1
ntu-103-R01222042-1.pdf: 8453864 bytes, checksum: 25d3ac33b4b7f1cf719da943945bae69 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
Acknowledgements 1
中文摘要 2
ABSTRACT 3
CONTENTS 4
LIST OF FIGURES 6
LIST OF TABLES 11
Chapter 1 Introduction 12
1.1 Overview of spintronics 12
1.2 Research objectives 13
1.3 Thesis outline 14
Chapter 2 Density functional theory 17
2.1 Introduction 17
2.2 Thomas-Fermi theory 19
2.3 Density functional theory 21
2.3.1 Hohenberg-Kohn theorem 21
2.3.2 Kohn-Sham equation 22
2.4 Exchange-correlation potentials 25
2.4.1 Local density approximation (LDA) 25
2.4.2 Generalized gradient approximation (GGA) 27
2.5 Spin polarized calculations 27
2.6 Plane waves and projector augmented wave (PAW) method 29
2.7 Spin-orbit coupling and magnetic anisotropy energy 32
2.8 Two current model and tunneling magnetoresistance 37
Chapter 3 Magnetic properties of the Fe/MgO superlattice 47
3.1 Crystal structure and fundamental properties 47
3.1.1 Introduction and computational details 47
3.1.2 Structure and magnetic properties 49
3.1.3 Variations in thickness of magnetic electrode or insulating layer 52
3.2 Perpendicular magnetic anisotropy 53
3.2.1 Spin-orbit splitting of density of states 53
3.2.2 Spin-orbit splitting of band structure 56
3.3 Tunneling magnetoresistance 58
3.3.1 Electronic density of states 58
Chapter 4 Magnetic properties of the multilayer ultrathin systems 65
4.1 Introduction and computational details 65
4.2 Epitaxial MgO(001) on Fe/MgO/Fe tunnel junctions 67
4.2.1 Electronic density of states 70
4.2.2 Electronic band structure 74
4.3 Epitaxial Ta(001) on Fe/MgO/Fe tunnel junctions 75
4.3.1 Electronic density of states 78
4.3.2 Electronic band structure 81
4.4 Epitaxial Ru(001) on Fe/MgO/Fe tunnel junctions 82
4.4.1 Electronic density of states 85
Chapter 5 Summary 90
REFERENCES 94
dc.language.isoen
dc.subject穿隧磁阻zh_TW
dc.subject自旋電子學zh_TW
dc.subject第一原理計算zh_TW
dc.subject磁穿隧結zh_TW
dc.subject自旋軌道耦合效應zh_TW
dc.subject磁異向性zh_TW
dc.subjectSpintronicsen
dc.subjectFirst principles calculationen
dc.subjectMagnetic anisotropyen
dc.subjectSpin-orbit couplingen
dc.subjectMagnetic tunnel junctionen
dc.subjectTunneling magnetoresistanceen
dc.title第一原理理論計算研究鐵/氧化鎂/鐵加覆蓋層的穿隧結之垂直磁異向性與穿隧磁阻zh_TW
dc.titleFirst-Principles Studies of Perpendicular Magnetic Anisotropy and Tunneling Magnetoresistance of Capped Fe/MgO/Fe Tunnel Junctionsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃斯衍(Ssu-Yen Huang),洪銘輝(Ming-Hwei Hong),胡崇德(Chong-Der Hu),李尚凡(Shang-Fan Lee)
dc.subject.keyword自旋電子學,穿隧磁阻,磁穿隧結,自旋軌道耦合效應,磁異向性,第一原理計算,zh_TW
dc.subject.keywordSpintronics,Tunneling magnetoresistance,Magnetic tunnel junction,Spin-orbit coupling,Magnetic anisotropy,First principles calculation,en
dc.relation.page98
dc.rights.note有償授權
dc.date.accepted2014-08-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
8.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved