請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57094
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊志忠 | |
dc.contributor.author | Chung-Hui Chen | en |
dc.contributor.author | 陳忠輝 | zh_TW |
dc.date.accessioned | 2021-06-16T06:34:47Z | - |
dc.date.available | 2016-08-14 | |
dc.date.copyright | 2014-08-14 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-08-04 | |
dc.identifier.citation | 1. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Phys. Rev. 106, 874 (1957)
2. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, 'Differentiating the contributions between localized surface plasmon and surface plasmon polariton on a one-dimensional metal grating in coupling with a light emitter,' Appl. Phys. Lett. 92, 133115, (2008). 3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, 'Surface plasmon subwavelength optics,' Nature 424, 824 (2003). 4. J. R. Sambles, G. W. Bradbery, and F. Z. Yang, “Optical excitation of surface plasmons: an introduction,” Contemp. Phys. 32, 173 (1991). 5. E. Kretschmann, and H. Reather, “Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. 23A, 2135, (1968). 6. C. W. Lai, J. An, and H. C. Ong, “Surface-plasmon-mediated emission from metal-capped ZnO thin films,” Appl. Phys. Lett. 86, 251105 (2005). 7. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, “Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings,” Optics Lett. 28, 1870, (2003). 8. H.L. Offerhaus, B. van de Bergen, M. Escalante, F.B. Segerink, J.P. Korterik, and N.F. van Hulst, “Creating focused plasmons by noncollinear phasematching on functional gratings,” Nano Lett. 5, 2144, (2005). 9. J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). 10. V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). 11. J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). 12. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). 13. G. Mie, “Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen,“ Ann. Phys. 25, 377 (1908). 14. V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996). 15. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985). 16. S. C. Kitson, W. L. Barnes, and J. R. Sambles, “Surface-plasmon energy gaps and photoluminescence,” Phys. Rev. B. 52, 11441 (1995). 17. W. L. Barnes, S. C. Kitson, T. W. preist, and J. R. Sambles, “Photonic surfaces for surface-plasmon polaritons,” J. Opt. Soc. Am. A 14, 1654 (1997). 18. C. Bonnand, J. Bellessa, C. Symond, and J. C. Plenet, “Polaritonic emission via surface plasmon cross coupling,” App. Phys. Lett. 89, 231119 (2006). 19. A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, “Interaction of metal particles with adsorbed dye molecules: absorption and luminescence,” Optics Lett. 5, 368 (1980). 20. A. M. Glass, A. Wokaun, J. P. Heritage, J. G. Bergman, P. F. Liao, and D. H. Olson, “Enhanced two-photon fluorescence of molecules adsorbed on silver particle films,” Phys. Rev. B 24, 4906 (1981). 21. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2, 1449 (2002). 22. K T. Shimizu, W. K. Woo, B. R. Fisher, H. J. Eisler, and M. G. Bawendi, “Surface-enhanced emission from single semiconductor nanocrystals,” Phys. Rev. Lett. 89, 117401 (2002). 23. Y. Ito, K. Matsuda, and Y. Kanemitsu, “Mechanism of photoluminescence enhancement in single semiconductor nanocrystals on metal surfaces,” Phys. Rev. B 75, 033309 (2007). 24. D. M. Schaadt, E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005). 25. R. B. Konda, R. Mundle, H. Mustafa, O. Bamiduro, U. N. Roy, Y. Cui, and A. Burger, “Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes,” Appl. Phys. Lett. 91, 191111 (2007). 26. N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, “Surface plasmon-enhanced photoluminescence from a single quantum well,” Appl. Phys. Lett. 75, 1577 (1999). 27. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quant. Elec. 36, 1131 (2000). 28. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light emitting diodes,” Adv. Mater. 14, 1393 (2002). 29. I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60, 11564 (1999). 30. A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B 66, 153305 (2002). 31. E.M. Purcell, “Resonance absorption by nuclear magnetic moments in a solid,” Phys. Rev. 69, 681 (1946). 32. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface- plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004). 33. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008). 34. B. Monemar and B. E. Sernelius, “Defect related issues in the ‘current roll-off’ in InGaN based light emitting diodes,” Appl. Phys. Lett. 91, 181103 (2007). 35. K. Akita, T. Kyono, Y. Yoshizumi, H. Kitabayashi, and K. Katayama, “Improvements of external quantum efficiency of InGaN-based blue light-emitting diodes at high current density using GaN substrates,” J. Appl. Phys. 101, 033104 (2007). 36. N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Watanabe, W. Gotz, and M. R. Krames, “ Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2,” Appl. Phys. Lett. 91, 243506 (2007). 37. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, “On the importance of radiative and Auger losses in GaN-based quantum wells,” Appl. Phys. Lett. 92, 261103 (2008). 38. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91, 141101 (2007). 39. Y. L. Li, Y. R. Huang, and Y. H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett. 91, 181113 (2007). 40. M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, “Polarization-matched GaInN/AlGaInN multi-quantum-well light-emitting diodes with reduced efficiency droop,” Appl. Phys. Lett. 93, 041102 (2008). 41. I. V. Rozhansky and D. A. Zakheim, “Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Phys. Sta. Sol. A 204, 227-230 (2007). 42. A. Neogi, C. W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, “Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling,” Phys. Rev. B. 66, 153305 (2002). 43. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004). 44. G. Sun, J. B. Khurgin, and R. A. Soref, “Practicable enhancement of spontaneous emission using surface plasmons,” Appl. Phys. Lett. 90, 111107 (2007). 45. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode,” Opt. Express 19, A914 (2011). 46. C. Y. Cho, Y. Zhang, E. Cicek, B. Rahnema, Y. Bai, R. McClintock, and M. Razeghi, “Surface plasmon enhanced light emission from AlGaN-based ultraviolet light-emitting diodes grown on Si (111),” Appl. Phys. Lett. 102, 211110 (2013). 47. C. H. Lin, C. Hsieh, C. G. Tu, Y. Kuo, H. S. Chen, P. Y. Shih, C. H. Liao, Y. W. Kiang, C. C. Yang, C. H. Lai, G. R. He, J. H. Yeh, and T. C. Hsu, “Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering,” Opt. Express 22, A842 (2014). 48. C. F. Lu, C. H. Liao, C. Y. Chen, C. Hsieh, Y. W. Kiang, and C. C. Yang, “Reduction in the efficiency droop effect of a light-emitting diode through surface plasmon coupling,” Appl. Phys. Lett. 96, 261104 (2010). 49. K. C. Shen, C. Y. Chen, H. L. Chen, C. F. Huang, Y. W. Kiang, C. C. Yang, and Y. J. Yang, “Enhanced and partially polarized output of a light-emitting diode with its InGaN/GaN quantum well coupled with surface plasmons on a metal grating,” Appl. Phys. Lett. 93, 231111 (2008). 50. Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN,” Appl. Phys. Lett. 102, 161103 (2013). 51. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, “Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode,” J. Opt. Soc. Am. B 30, 2599 (2013). 52. Y. Kuo, H. T. Chen, W. Y. Chang, H. S. Chen, C. C. Yang, and Y. W. Kiang, “Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmon induced on a surface metal nanoparticle in a light-emitting device,” Opt. Express 22, A155 (2014). 53. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20, 1253 (2008). 54. C. Y. Cho, S. J. Lee, J. H. Song, S. H. Hong, S. M. Lee, Y. H. Cho, and S. J. Park, “Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles,” Appl. Phys. Lett. 98, 051106 (2011). 55. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201 (2008). 56. C. W. Huang, H. Y. Tseng, C. Y. Chen, C. H. Liao, C. Hsieh, K Y. Chen, H. Y. Lin, H. S. Chen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Fabrication of surface metal nanoparticles and their induced surface plasmon coupling with subsurface InGaN/GaN quantum wells,” Nanotechnology 22, 475201 (2011). 57. Y. C. Lu, Y. S. Chen, F. J. Tsai, J. Y. Wang, C. H. Lin, C. Y. Chen, Y. W. Kiang, and C. C. Yang, “Improving emission enhancement in surface plasmon coupling with an InGaN/GaN quantum well by inserting a dielectric layer of low refractive index between metal and semiconductor,” Appl. Phys. Lett. 94, 233113 (2009). 58. H. S. Chen, Y. F. Yao, C. H. Liao, C. G. Tu, C. Y. Su, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array,” Opt. Lett. 38, 3370 (2013). 59. C. Y. Chen, C. Hsieh, C. H. Liao, W. L. Chung, H. T. Chen, W. Cao, W. M. Chang, H. S. Chen, Y. F. Yao, S. Y. Ting, Y. W. Kiang, C. C. Yang, and X. Hu, “Effects of overgrown p-layer on the emission characteristics of the InGaN/GaN quantum wells in a high-indium light-emitting diode,” Opt. Express 20, 11321 (2012). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/57094 | - |
dc.description.abstract | 我們透過在p型氮化鎵和銀奈米顆粒間插入折射率較氮化鎵低的介電質中間層,將表面電漿子耦合效應應用在藍色發光二極體上。當p型氮化鎵厚度較薄時,表面的銀奈米顆粒所產生之表面電漿子共振和發光二極體中的量子井耦合,可以提高內部量子效率和發光二極體的發光強度,減少載子的生命週期,降低外部量子效率在元件注入高電流時滑弱的效應,同時提高調變頻率。在銀金屬奈米顆粒及p型氮化鎵間插入低折射率的介電質層,可以使表面電漿子共振波長藍移,藉以提升藍光發光二極體之表面電漿子耦合效果,但當p型氮化鎵厚度較厚時,表面的銀奈米顆粒和量子井距離太遠,表面電漿子耦合效果不明顯,但發光二極體的特性仍會因為銀顆粒增加些微的光萃取效率。本論文中,我們比較表面規則排列和隨機分佈銀奈米顆粒的效果,其中規則排列的銀奈米顆粒可以有波長較專一性的的侷域表面電漿子共振,然而表面電漿子耦合效率取決於侷域表面電漿子在量子井發光波段的共振強度,因此,表面規則排列的銀奈米顆粒產生之表面電漿子耦合效果未必比較強。同時我們也比較單層及多層量子井的表面電漿子耦合效應,結果顯示單層量子井的發光二極體之表面電漿子耦合效應較強,我們認為這是因為多層量子井結構和表面電漿子耦合的效應較不均勻,而且多層量子井本質上其內部量子效率較單層高,因此表面電漿子耦合效應在多層量子井的實驗結果上較不明顯。 | zh_TW |
dc.description.abstract | The enhanced surface plasmon (SP) coupling effects in a blue light-emitting diode (LED) with surface Ag nanoparticles (NPs) by adding a dielectric interlayer (DI) of a lower refractive index, when compared with that of GaN, between the Ag NPs and p-GaN is demonstrated. When the p-GaN is reasonably thin, the surface Ag NPs induce SP coupling with the quantum wells (QWs) in the LED, leading to the increases of internal quantum efficiency (IQE) and LED output intensity, the decrease of photoluminescence (PL) decay time, the reduction of the external quantum efficiency (EQE) droop effect, and the increase of modulation cutoff frequency. By adding a DI, the SP coupling effect is enhanced, resulting in the further improvements of all the aforementioned factors. When the p-GaN layer is thick, the weak SP-coupling plus light extraction enhancement can also slightly increase the emission efficiency, reduce the droop effect, and increase the modulation cutoff frequency.
In this study, we also compare the SP coupling effects between the LEDs with regularly patterned (REG) and randomly distributed (RAN) Ag NPs. Although the REG Ag NPs can produce stronger localized surface plasmon (LSP) resonances with narrower spectral widths, the SP coupling effect depends only on the LSP resonance strength at the QW emission wavelength. Meanwhile, we compare the SP coupling effects between the LED samples with single- and multiple-QW. In all cases, the LED performance improvements are more significant through SP coupling in the samples with single-QW. This result can be attributed to the non-uniform SP coupling effects among the QWs in a multiple-QW sample. Also, the higher intrinsic IQE in the samples with multiple QWs can result in a less favorable SP coupling effect. | en |
dc.description.provenance | Made available in DSpace on 2021-06-16T06:34:47Z (GMT). No. of bitstreams: 1 ntu-103-R01941060-1.pdf: 1497400 bytes, checksum: 9db5f94551b0cf96f31ec536db198673 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 中文摘要 iii Abstract iv Content vi List of Figure viii List of Table x Chapter 1 1 1.1 Surface Plasmons 1 1.1.1 Surface Plasmon Polaritons 1 1.1.2 Localized Surface Plasmons 3 1.1.3 Application of Surface Plasmon 6 1.2 Coupling between an InGaN/GaN QW and Surface Plasmons 8 1.3 Nano imprint Lithography 10 1.4 Efficiency Droop in Nitride-based Lighting Emitting Diodes 12 1.5 Research Motivations 13 Chapter 2 23 2.1 Sample Structures 23 2.2 Regularly-patterned Surface Ag Nanoparticles 24 2.3 Randomly-distributed Surface Ag Nanoparticles 26 Chapter 3 33 3.1 Transmission Spectra 33 3.2 Photoluminescence Characterization Results 35 3.3 Performances of the LEDs with Regularly-patterned Ag Nanoparticles 37 3.4 Performances of the LEDs with Randomly-distributed Ag Nanoparticles 42 3.5 Discussions 44 Chapter 4 58 References 60 | |
dc.language.iso | en | |
dc.title | 具有表面銀奈米顆粒及插入介電質層的表面電漿子耦合發光二極體 | zh_TW |
dc.title | Surface Plasmon Coupled Light-emitting Diodes with Surface Ag Nanoparticles and Dielectric Interlayers | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江衍偉,吳育任,黃建璋,吳肇欣 | |
dc.subject.keyword | 銀奈米顆粒,介電質層,表面電漿子,發光二極體, | zh_TW |
dc.subject.keyword | Surface Plasmon,Ag Nano particles,Dielectric interlayer, | en |
dc.relation.page | 70 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2014-08-04 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.46 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。